首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   24篇
  国内免费   3篇
测绘学   8篇
大气科学   30篇
地球物理   88篇
地质学   102篇
海洋学   35篇
天文学   31篇
综合类   4篇
自然地理   57篇
  2024年   1篇
  2023年   7篇
  2022年   3篇
  2021年   10篇
  2020年   14篇
  2019年   24篇
  2018年   19篇
  2017年   11篇
  2016年   21篇
  2015年   10篇
  2014年   13篇
  2013年   20篇
  2012年   17篇
  2011年   22篇
  2010年   16篇
  2009年   18篇
  2008年   24篇
  2007年   18篇
  2006年   11篇
  2005年   10篇
  2004年   9篇
  2003年   10篇
  2002年   13篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有355条查询结果,搜索用时 0 毫秒
21.
The mid-Holocene (ca. 8000-4000 cal yr BP) was a time of marked aridity throughout much of Minnesota, and the changes due to mid-Holocene aridity are seen as an analog for future responses to global warming. In this study, we compare the transition into (ca. 9000-7000 yr ago) and out of (ca. 5000-2500 yr ago) the mid-Holocene (MH) period at Kimble Pond and Sharkey Lake, located along the prairie forest ecotone in south-central Minnesota, using high resolution (∼ 5-36 yr) sampling of pollen, charcoal, sediment magnetic and loss-on-ignition properties. Changes in vegetation were asymmetrical with increasing aridity being marked by a pronounced shift from woodland/forest-dominated landscape to a more open mix of grassland and woodland/savanna. In contrast, at the end of the MH, grassland remained an important component of the landscape despite increasing effective moisture, and high charcoal influxes (median 2.7-4.0 vs. 0.6-1.7 mm2 cm− 2 yr− 1 at start of MH) suggest the role of fire in limiting woodland expansion. Asymmetric vegetation responses, variation among and within proxies, and the near-absence of fire today suggest caution in using changes associated with mid-Holocene aridity at the prairie forest boundary as an analog for future responses to global warming.  相似文献   
22.
The unique Middle and Late Pleistocene sedimentary record preserved along the Sussex/Hampshire Coastal Corridor between Romsey and Brighton contains a wealth of deposits including highstand marine sediments associated with a variety of different aged beaches, fluvial sediments associated with rivers crossing the coastal plain and cold stage deposits accumulating above the marine and fluvial sediments. Although quarrying activity has been extensive across much of the area it has been undertaken in flooded workings due to the high level of the watertable. Consequently little is known in detail about the sequences except where they outcrop on the foreshore around the coast. This paper examines recent work from the lower coastal plain using a multi-disciplinary approach these deposits to elucidate the age of the sequences and their associated environments of deposition.OSL dates from two of the beaches, the Aldingbourne and Brighton/Norton Beaches, place both within MIS 7. Although these OSL dates cannot differentiate between sub-stages within MIS 7, coupling these results with inferences from local geography, lithology and contained microfossils it is clear that the beaches belong to two different phases within MIS 7. These two beaches are clearly divided by a major phase of erosion and downcutting associated with a fall in sea-level. Fluvial sediments from Solent Terrace 2 and Arun Terrace 4 also date within MIS 7 and are tentatively ascribed to the downcutting event between the beaches. Together this information allows us to propose, for the first time, a robust independently dated framework for the lower parts of the coastal plain integrating for the first time the marine and terrestrial record.  相似文献   
23.
Understanding the interactions of climate, physical erosion, chemical weathering and pedogenic processes is essential when considering the evolution of critical zone systems. Interactions among these components are particularly important to predicting how semiarid landscapes will respond to forecasted changes in precipitation and temperature under future climate change. The primary goal of this study was to understand how climate and landscape structure interact to control chemical denudation and mineral transformation across a range of semiarid ecosystems in southern Arizona. The research was conducted along the steep environmental gradient encompassed by the Santa Catalina Mountains Critical Zone Observatory (SCM-CZO). The gradient is dominated by granitic parent materials and spans significant range in both mean annual temperature (>10 °C) and precipitation (>50 cm a?1), with concomitant shift in vegetation communities from desert scrub to mixed conifer forest. Regolith profiles were sampled from divergent and convergent landscape positions in five different ecosystems to quantify how climate-landscape position interactions control regolith development. Regolith development was quantified as depth to paralithic contact and degree of chemical weathering and mineral transformation using a combination of quantitative and semi-quantitative X-ray diffraction (XRD) analyses of bulk soils and specific particle size classes. Depth to paralithic contact was found to increase systematically with elevation for divergent positions at approximately 28 cm per 1000 m elevation, but varied inconsistently for convergent positions. The relative differences in depth between convergent and divergent landscape positions was greatest at the low and high elevation sites and is hypothesized to be a product of changes in physical erosion rates across the gradient. Quartz/Plagioclase (Q/P) ratios were used as a general proxy for bulk regolith chemical denudation. Q/P was generally higher in divergent landscape positions compared to the adjacent convergent hollows. Convergent landscape positions appear to be collecting solute-rich soil–waters from divergent positions thereby inhibiting chemical denudation. Clay mineral assemblage of the low elevation sites was dominated by smectite and partially dehydrated halloysite whereas vermiculite and kaolinite were predominant in the high elevation sites. The increased depth to paralithic contact, chemical denudation and mineral transformation are likely functions of greater water availability and increased primary productivity. Landscape position within a given ecosystem exerts strong control on chemical denudation as a result of the redistribution of water and solutes across the landscape surface. The combined data from this research demonstrates a strong interactive control of climate, landscape position and erosion on the development of soil and regolith.  相似文献   
24.
Nature-based solutions are rapidly gaining interest in the face of global change and increasing flood risks. While assessments of flood risk mitigation by coastal ecosystems are mainly restricted to local scales, our study assesses the contribution of salt marshes and mangroves to nature-based storm surge mitigation in 11 large deltas around the world. We present a relatively simple GIS model that, based on globally available input data, provides an estimation of the tidal wetland’s capacity of risk mitigation at a regional scale. It shows the high potential of nature-based solutions, as tidal wetlands, to provide storm surge mitigation to more than 80% of the flood-exposed land area for 4 of the 11 deltas and to more than 70% of the flood-exposed population for 3 deltas. The magnitude of the nature-based mitigation, estimated as the length of the storm surge pathway crossing through tidal wetlands, was found to be significantly correlated to the total wetland area within a delta. This highlights the importance of conserving extensive continuous tidal wetlands as a nature-based approach to mitigate flood risks. Our analysis further reveals that deltas with limited historical wetland reclamation and therefore large remaining wetlands, such as the Mississippi, the Niger, and part of the Ganges-Brahmaputra deltas, benefit from investing in the conservation of their vast wetlands, while deltas with extensive historical wetland reclamation, such as the Yangtze and Rhine deltas, may improve the sustainability of flood protection programs by combining existing hard engineering with new nature-based solutions through restoration of former wetlands.  相似文献   
25.
26.
Tidal marsh degradation has been attributed to a number of different causes, but few studies have examined multiple potential factors at the same sites. Differentiating the diverse drivers of marsh loss is critical to prescribing successful interventions for conservation and restoration of this important habitat. We evaluated two hypotheses for vegetation loss at two marshes in Long Island Sound (LIS): (1) marsh submergence, caused by an imbalance between sea-level rise and marsh accretion, and (2) defoliation associated with herbivory by the purple marsh crab, Sesarma reticulatum. At our western LIS site, we found no evidence of herbivory: crabs were scarce, and crab-exclusion cages provided no benefit. We attribute degradation at that site to submergence, a conclusion supported by topographic and hydrologic data showing that loss of vegetation occurred only in wetter parts of the marsh. In contrast, at our central LIS site, our observations were consistent with herbivory as a driving force: There were substantial populations of Sesarma, crab-exclusion cages allowed plants to thrive, and vegetation loss took place across a variety of elevations. We also analyzed soil conditions at both sites, in order to determine the signatures of different degradation processes and assess the potential for restoration. At the submergence site, unvegetated soils exhibited high bulk density, low organic content, and low soil strength, posing significant biogeochemical challenges to re-colonization by vegetation. At the herbivory site, unvegetated soils had a characteristic “riddled-peat” appearance, resulting from expansion and erosion of Sesarma burrow networks. The high redox potential and organic content of those soils suggested that revegetation at the herbivory site would be likely if Sesarma populations could be controlled before erosion leads to elevation loss.  相似文献   
27.
An understanding of the processes that lead to long-term stabilization of organic matter in soils is essential to the effective implementation of strategies designed to mitigate CO2 loss from the soil carbon reservoir in temperate climatic zones. Decomposition studies indicate that montmorillonite, a smectite that often forms with interlayers rich in Ca2+, greatly retards the microbial mineralization of soil organic matter. We performed a series of atomistic simulations designed to identify favorable molecular-scale organo-mineral interactions within nanoscale, hydrated complexes consisting of a humic substance and Ca-montmorillonite. Both protonated and Ca-saturated forms of the model humic molecule, representing acidic and circumneutral solution conditions, respectively, were studied within the hydrated interlayer region of a rigid-atom model of Ca-montmorillonite. The protonated humic substance formed direct hydrophobic and hydrogen bonding (H-bonding) interactions with the clay mineral. A few polar organic groups adsorbed via water bridging interactions. The Ca-saturated humic substance adsorbed via numerous cation bridges, less numerous water bridges, and indirect H-bonding interactions mediated by water molecules. Application of molecular modeling techniques to this complex organo-mineral system thus allowed identification of interactions favorable to carbon sequestration under both acidic and circumneutral conditions.  相似文献   
28.
Recent investigations of a limestone solution cave on the Queen Charlotte Islands (Haida Gwaii) have yielded skeletal remains of fauna including late Pleistocene and early Holocene bears, one specimen of which dates to ca. 14,400 14C yr B.P. This new fossil evidence sheds light on early postglacial environmental conditions in this archipelago, with implications for the timing of early human migration into the Americas.  相似文献   
29.
Rebecca Elmhirst 《Geoforum》2011,42(2):173-183
An important theme in studies of enclosure and resource access in Southeast Asian hinges on the concept of the ‘political forest’, a particular constellation of power constituted by ideas, practices and institutions that seek to regulate peoples’ access to resources, providing recognition and legitimacy to some, whilst excluding and criminalizing others. Whilst issues of class and ‘race’ underpin work in this vein, in Indonesia, much less attention has been directed towards the ways in which gender inheres in the regularisation of land and livelihood, and the ordering of upland spaces. Drawing on recent feminist and queer theorizing of the links between citizenship, recognition and hetero-normativity, and on analyses of the social relationships through which resource access is negotiated and realized, the paper presents a feminist political ecology of the gender dynamics inherent in the power plays of resource access as land-poor rural migrants negotiate a shifting landscape of enclosure in Lampung province. Through an analysis of three periods of resource governance and control in the province, the paper shows how the negotiation of resource access is simultaneously a process of self-regulation and subject-making that draws on particular ideas about family and conjugal partnership, inculcating gendered and hetero-normative ideologies of the “ideal citizen”. Through particular representational strategies - positionings - necessary to qualify for resource access, and through the material practices necessary to realize the benefits of resource access, conjugal partnership is reiterated and remade as an important social relationship through which resource access may be realised, for men as well as for women.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号