首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   573篇
  免费   14篇
  国内免费   7篇
测绘学   30篇
大气科学   40篇
地球物理   137篇
地质学   176篇
海洋学   24篇
天文学   148篇
综合类   12篇
自然地理   27篇
  2023年   2篇
  2022年   11篇
  2021年   14篇
  2020年   11篇
  2019年   6篇
  2018年   22篇
  2017年   35篇
  2016年   21篇
  2015年   24篇
  2014年   33篇
  2013年   59篇
  2012年   23篇
  2011年   25篇
  2010年   19篇
  2009年   22篇
  2008年   20篇
  2007年   13篇
  2006年   14篇
  2005年   13篇
  2004年   13篇
  2003年   10篇
  2002年   9篇
  2001年   8篇
  2000年   4篇
  1999年   5篇
  1998年   7篇
  1997年   14篇
  1996年   7篇
  1995年   6篇
  1993年   4篇
  1992年   6篇
  1991年   7篇
  1990年   8篇
  1989年   6篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   9篇
  1984年   16篇
  1983年   11篇
  1982年   5篇
  1981年   8篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1975年   4篇
  1972年   3篇
  1971年   3篇
  1957年   1篇
排序方式: 共有594条查询结果,搜索用时 890 毫秒
21.
—An algorithm has been developed to compute the dispersive and dissipative seismic response using FUTTERMAN’S (1962) third attenuation-dispersion relationship. In the computation, frequency-dependent velocity and quality factor Q have been used but in the case of the nondispersive synthetic seismogram, frequency-independent velocity has been used. The model’s parameters are density, phase velocity, quality factors and thicknesses of the layers. Dispersive and nondispersive synthetic seismograms have been computed with and without absorption for a layered earth geological model. Fast Fourier transform (FFT) technique has been adopted for converting the frequency domain response into the time domain. The frequency spacing, Δf = 0.976?Hz, has been considered to avoid the aliasing effect. The results have revealed changes in the reflected waveforms in the frequency domain as well as in the time domain for absorption and dispersion cases. It is also concluded that dispersion reduces the arrival time and this effect is increasing with the travel time. The effect of constant Q on the seismic response has also been studied.  相似文献   
22.
The characteristics of VHF radiowave scintillations at 244 MHz (FLEETSAT) during a complete solar cycle (1983–93) at a low-latitude station, Waltair (17.7°N, 83.3°E), are presented. The occurrence of night-time scintillations shows equinoctial maxima and summer minima in all the epochs of solar activity, and follows the solar activity. The daytime scintillation occurrence is negatively correlated with the solar activity and shows maximum occurrence during the summer months in a period of low solar activity. The occurrence of night-time scintillations is inhibited during disturbed days of high solar activity and enhanced during low solar activity.  相似文献   
23.
24.
25.
26.
27.
Many large rivers around the world no longer flow to their deltas, due to ever greater water withdrawals and diversions for human needs. However, the importance of riparian ecosystems is drawing increasing recognition, leading to the allocation of environmental flows to restore river processes. Accurate estimates of riparian plant evapotranspiration (ET) are needed to understand how the riverine system responds to these rare events and achieve the goals of environmental flows. In 2014, historic environmental flows were released into the Lower Colorado River at Morelos Dam (Mexico); this once perennial but now dry reach is the final stretch to the mighty Colorado River Delta. One of the primary goals was to supply native vegetation restoration sites along the reach with water to help seedlings establish and boost groundwater levels to foster the planted saplings. Patterns in ET before, during, and after the flows are useful for evaluating whether this goal was met and understanding the role that ET plays in this now ephemeral river system. Here, diurnal fluctuations in groundwater levels and Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to compare estimates of ET specifically at 3 native vegetation restoration sites during 2014 planned flow events, and MODIS data were used to evaluate long‐term (2002–2016) ET responses to restoration efforts at these sites. Overall, ET was generally 0–10 mm d?1 across sites, and although daily ET values from groundwater data were highly variable, weekly averaged estimates were highly correlated with MODIS‐derived estimates at most sites. The influence of the 2014 flow events was not immediately apparent in the results, although the process of clearing vegetation and planting native vegetation at the restoration sites was clearly visible in the results.  相似文献   
28.
The Gulf of Guinea in the equatorial Atlantic is characterized by the presence of strong subsidence at certain times of the year. This subsidence appears in June and becomes well established from July to September. Since much of theWest African monsoon flow originates over the Gulf, Guinean subsidence is important for determining moisture sources for the monsoon. Using reanalysis products, I contribute to a physical understanding of what causes this seasonal subsidence, and how it relates to precipitation distributions across West Africa.There is a seasonal zonal overturning circulation above the Congo basin and the Gulf of Guinea in the ERA-Interim, ERA-40, NCEP2, and MERRA reanalyses. The up-branch is located in the Congo basin around 20°E. Mid-tropospheric easterly flows constitute the returning-branch and sinking over the Gulf of Guinea forms the down-branch, which diverges at 2°W near the surface, with winds to the east flowing eastward to complete the circulation. This circulation is driven by surface temperature differences between the eastern Gulf and Congo basin. Land temperatures remain almost uniform, around 298 K, throughout a year, but the Guinean temperatures cool rapidly from 294 K in May to about 290 K in August. These temperature changes increase the ocean/land temperature contrast, up to 8 K, and drive the circulation.I hypothesize that when the overturning circulation is anomalously strong, the northward moisture transport and Sahelian precipitation are also strong. This hypothesis is supported by ERA-Interim and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record) data.  相似文献   
29.
30.
The decapod assemblage associated with a Posidonia oceanica meadow located near its western limit of biogeographic distribution was studied over an annual cycle. Fauna samples were taken seasonally over a year (five replicates per season) in two sites located 7 km apart, using a non‐destructive sampling method (airlift sampler) for the seagrass. The dominant species of the assemblage, Pisidia longimana, Pilumnus hirtellus and Athanas nitescens, were associated with the protective rhizome stratum, which is mainly used as a nursery. The correlations between decapod assemblage structure and some phenological parameters of the seagrass shoots and wave height were negative or null, which reflects that species associated with the rhizome had a higher importance than those associated with the leaf stratum. The abundance and composition of the decapod assemblage as well as the ecological indexes displayed a seasonality trend with maximum values in summer‐autumn and minimum in winter‐spring, which were related to the seawater temperature and the recruitment periods of the dominant species. The spatial differences found in the structure and dynamics of the assemblages may be due to variations in the recruitment of the dominant species, probably as a result of the influence of local factors (e.g. temperature, currents) and the high dispersal ability of decapods, together with the patchy configuration and the surrounding habitats. The studied meadows are fragmented and are integrated within a mosaic of habitats (Cymodocea nodosa patches, algal meadows, rocky and sandy bottoms), which promotes the movement of individuals and species among them, maintaining a high species richness and evenness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号