首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   11篇
  国内免费   3篇
测绘学   14篇
大气科学   12篇
地球物理   48篇
地质学   135篇
海洋学   6篇
天文学   34篇
综合类   4篇
自然地理   4篇
  2022年   5篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   17篇
  2017年   17篇
  2016年   24篇
  2015年   8篇
  2014年   18篇
  2013年   15篇
  2012年   19篇
  2011年   15篇
  2010年   12篇
  2009年   24篇
  2008年   19篇
  2007年   12篇
  2006年   11篇
  2005年   6篇
  2004年   9篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
排序方式: 共有257条查询结果,搜索用时 414 毫秒
51.
Proterozoic terrains in South India and Madagascar provide important clues in understanding the Gondwanaland tectonics, especially the assembly of this mega-continent during the Pan-African period. The Archaean terrains in both Madagascar and India are characterized by N-S trending greenstone belts occurring within gneissose granitic rocks in the northern part. Extensive development of K-rich granitic rocks of ca. 2.5 Ga is also characteristic in both areas. Such a broad age zonation of younger Dharwar (ca 2.6–3.0 Ga) in the north and the older Sargur (ca 3.0–3.4 Ga) in the south as in South India remains to be identified in future studies from Madagascar. The occurrence of greenschist facies rocks in the northeastern part and higher grade rocks in most of other parts in the north-central terrain of Madagascar is comparable with the general tendency of increasing metamorphic grade from northwestern to southern areas ranging from greenschist to granulite facies in South India. The Proterozoic crystalline rocks in both continents show pronounced lithological similarity with the wide occurrence of graphite-bearing khondalite in association with charnockitic rocks. While the Archaean-Proterozoic boundary is well defined in southern India by the Palghat-Cauvery or the KKPT shear zones as recently identified, this boundary is ill-defined in Madagascar due to extensive Pan-African overprinting, as well as the development of the Proterozoic cover sequence, the Itremo Group. There is also a possible general correlation between the Mesoproterozoic cover sequences in Madagascar and India, such as between the Itremo Group of west-central Madagascar and the Kaladgi and Cuddapah sequences of South India. The Pan-African granulite facies metamorphism of ca. 0.5 Ga extensively developed in both India and Madagascar is generally comparable in intensity and extent. P-T conditions and P-T-t paths also appear comparable, with the general range of ca. 700–1000°C and 6–9 kb, and near-isothermal decompressional paths. A-type granite plutons and alkaline rocks including anorthosites and mafic plutonic rocks of ca. 500–800 Ma develop in both terrains, provide strong basis for the correlation of both terrains, and define a Pan-African igneous province within East Gondwanaland. Major shear zones in both continents are expected to play a critical role in the correlation, albeit are still poorly constrained. Detailed elucidation of the tectonic history of the shear zones, and the timing of various events along the shear zones would provide important constraints on the correlation of the two continental fragments.  相似文献   
52.
The proper usage of modal composition and geochemical classification of granitoids is discussed for assigning a proper nomenclature for the Angadimogar pluton, Kerala, southwestern India. This discussion is mainly aimed at addressing questions concerning the nomenclature of Angadimogar pluton (syenitevs. granite). Modal composition and whole-rock XRD data clearly show that the pluton exposed near Angadimogar is a quartz-syenite and its geochemistry is typical of a ferroan, metaluminous, alkali (A-type) granitoid  相似文献   
53.
Major and trace element geochemistry of Proterozoic granitoids from the Dirang and Galensiniak Formations, of Lesser and Higher Himalayas, respectively, emplaced in and around Dirang and Tawang regions of the western Arunachal Himalaya, is discussed. In general, these granitoids are massive as well as foliated in nature and are characterized by granitic mineralogical compositions. Porphyritic and hypidiomorphic textures are common in massive type, whereas others show porphyroblastic and foliated textures. Augen structure is also observed in a number of samples. Geochemical and normative compositions together with petrographic features classify them as peraluminous granitoids. Major and trace element geochemistry of most of these granitoids shows granitic nature, while few samples also show monzonitic characteristics. Observed geochemical characters, such as their peraluminous and alkali-calcic/calcic-alkalic nature, crudely defined geochemical patterns, different multi-element and rare-earth element patterns, together with low Mg# (Mg number) of these granitoids suggest their derivation from lower crustal material rather than a mantle source. Multi-element and rare-earth element patterns corroborate their genesis from different crustal melts. It is difficult to explain variations observed in granitoid rocks by partial melting alone; definitely different other processes like migration of melts, magma mixing, assimilation and fractional crystallization also played important role in the genesis of these granitoids. These melts were likely generated at low temperature (730–760 °C) and low pressure (2–5 GPa). The chemical compositions suggest that most of these Paleoproterozoic granitoids are emplaced within the syn-collisional tectonic setting, while few granitoid samples also indicate their volcanic-arc nature. Probably, later group of granitoids are slightly younger to the syn-collisional type.  相似文献   
54.
The present study attempts to formulate a regression model to predict summer rainfall over Peninsular India (PIR) using some regional predictors. Parameters having significant correlation (99%) with PIR were identified for the period 1975–1997 (training), and a 15-year sliding correlation (90%) was found to check the consistency of the relationship between PIR and predictors. From a set of 14 candidate predictors, 4 were selected using a stepwise regression method and tested over a period from 1998 to 2006. The predictors selected are sea surface temperature during March over Indian Ocean, air temperature at 850?hPa during May over Peninsular India, zonal, and meridional wind at 700?hPa during February and January, respectively, over the Arabian Sea. The model captures a variance of 77.7% and has a multiple correlation of 0.88. The root mean square error, absolute mean error, and bias for the training (test) period were 7.6% (21.5%), 6.6% (17.9%), and 0% (11.4%) of mean rainfall, respectively. Results of the climatological predictions show that the model developed is useful.  相似文献   
55.
The Weather Research and Forecasting model with Chemistry (WRF-Chem) is utilized to examine the radiative effects of black carbon (BC) aerosols on the Indian monsoon, for the year 2010. Five ensemble simulations with different initial conditions (1st to 5th December, 2009) were performed and simulation results between 1st January, 2010 to 31st December, 2010 were used for analysis. Most of the BC which stays near the surface during the pre-monsoon season gets transported to higher altitudes with the northward migration of the Inter Tropical Convergence Zone (ITCZ) during the monsoon season. In both the seasons, strong negative SW anomalies are present at the surface along with positive anomalies in the atmosphere, which results in the surface cooling and lower tropospheric heating, respectively. During the pre-monsoon season, lower troposphere heating causes increased convection and enhanced meridional wind circulation, bringing moist air from Indian Ocean and Bay of Bengal to the North-East India, leading to increased rainfall there. However, during the monsoon season, along with cooling over the land regions, a warming over the Bay of Bengal is simulated. This differential heating results in an increased westerly moisture flux anomaly over central India, leading to increased rainfall over northern parts of India but decreased rainfall over southern parts. Decreased rainfall over southern India is also substantiated by the presence of increased evaporation over Bay of Bengal and decrease over land regions.  相似文献   
56.
A newly recognized remnant of a Paleoproterozoic Large Igneous Province has been identified in the southern Bastar craton and nearby Cuddapah basin from the adjacent Dharwar craton, India. High precision U–Pb dates of 1891.1 ± 0.9 Ma (baddeleyite) and 1883.0 ± 1.4 Ma (baddeleyite and zircon) for two SE-trending mafic dykes from the BD2 dyke swarm, southern Bastar craton, and 1885.4 ± 3.1 Ma (baddeleyite) for a mafic sill from the Cuddapah basin, indicate the existence of 1891–1883 Ma mafic magmatism that spans an area of at least 90,000 km2 in the south Indian shield.This record of 1.9 Ga mafic/ultramafic magmatism associated with concomitant intracontinental rifting and basin development preserved along much of the south-eastern margin of the south Indian shield is a widespread geologic phenomenon on Earth. Similar periods of intraplate mafic/ultramafic magmatism occur along the margin of the Superior craton in North America (1.88 Ga Molson large igneous province) and in southern Africa along the northern margin of the Kaapvaal craton (1.88–1.87 Ga dolerite sills intruding the Waterberg Group). Existing paleomagnetic data for the Molson and Waterberg 1.88 Ga large igneous provinces indicate that the Superior and Kalahari cratons were at similar paleolatitudes at 1.88 Ga but a paleocontinental reconstruction at this time involving these cratons is impeded by the lack of a robust geological pin such as a Limpopo-like 2.0 Ga deformation zone in the Superior Province. The widespread occurrence of 1.88 Ga intraplate and plate margin mafic magmatism and basin development in numerous Archean cratons worldwide likely reflects a period of global-scale mantle upwelling or enhanced mantle plume activity at this time.  相似文献   
57.
Summary The Ambadungar (Amba Dongar) alkaline carbonatite complex is emplaced in the Deccan traps igneous province. A wide range of carbonatites and alkaline rocks are exposed around Ambadungar. The alkaline rocks have been classified as tinguaite, phonolite and/or phononephelinite, melanephelinite, and syenite and/or nepheline syenite whereas carbonatites vary from calcio-carbonatites to ferro- and silicocarbonatites. The enrichment in large-ion lithophile elements (LILE), P, and rare-earth elements (REE) in carbonatites is considered to result from fractionation of a mantle derived magmatic liquid, i.e. nephelinitic magma, by liquid immiscibility which also produced melanephelinite and/or phononephelinite with high field strength elements (HFSE) such as Ca, Mg, Fe, and Mn in the alkaline silicate liquid fraction. The La:Lu ratios of the carbonatites are typical of igneous rocks and vary between 590 and 1945, similar to many known magmatic carbonatites. The 13C concentration varies between –2 and –8 whereas 18O-values vary between 7.7 and 26.8. The 13C concentration is typical of primary igneous carbonatites but 18O enrichment is thought to be the result of post-magmatic processes such as interaction with meteoric water and re-equilibration with hydrous fluids at low temperatures.
Petrologie, Geochemie und Genese der riftgebundenen Karbonatite von Ambadungar, Indien
Zusammenfassung Der Ambadungar (Amba Dongar) Alkalikarbonatit-Komplex liegt in der magmatischen Deccan Provinz. Er umfaßt eine Vielzahl von karbonatitischen und alkalischen Gesteinen, die in der Umgebung von Ambadungar aufgeschlossen sind. Die Alkaligesteine sind als Tinguaite, Phonolite und/oder Phononephelinite, Melanephelinite, Syenite und/oder Nephelinsyenite zu klassifizieren, die Karbonatite als Calcio-, bis Ferro- and Silicokarbonatite. Die Anreicherung an LIL-Elementen und Seltenen Erden in den Karbonatiten werden als das Ergebnis der Fraktionierung von Mantelschmelzen, i.e. eines nephelinitisches Magmas, infolge von Nichtmischbarkeit interpretiert. Melanephelinite und/oder Phononephelinite and hohe Gehalte an HFS-Elementen (Ca, Mg, Fe and Mn) in der alkalisch-silikatischen Schmelzfraktion sind ebenfalls das Ergebnis dieser Prozesse. Die La/Lu-Verhältnisse sind typisch für magmatische Karbonatite and variieren zwischen 590 and 1945. Die 13C Konzentrationen variieren zwischen -2 and -8 %o, die 18O Werte zwischen 7.7 and 26.8 %0. Während die 13C Konzentration typisch für primär magmatische Karbonatite ist, ist die 18O-Anreicherung mit postmagmatischen Prozessen, wie etwa die Interaktion mit meteorischen Wässern and die Reequilibration mit niedrig temperierten wäßrigen Fluiden, erklärbar.


with 11 figures  相似文献   
58.
The Sargipali sulphide deposit, hosted by a sequence of metasediments of the Precambrian Gangpur Series, represents the stratiform and stratabound Pb-Cu mineralization. Lead-isotope analyses obtained from six galena samples of different forms and stratigraphical levels, yielded a model Pb age of 1665 Ma, which predates the episodes of deformation and metamorphism ( 850 Ma) as well as syn-to late-tectonic magmatism. The model Pb age, on the contrary, shows a relationship to the closing phase of the Gangpur sedimentation (1700 Ma) in a shallow-water marine environment. The notable paucity of the interlayered volcanic rock in the deposit and its Pb-rich nature possibly point to its being the sedimentary exhalative (SEDEX) type. Documentary evidence for the Pb component from the geological environment of the upper continental crust is revealed by an exceptionally high (= 238U/204Pb) and the slightly above average W(= 232Th/238U) values. These indicate that the source rock was initially rich in U-Th-Pb concentration. For the Sargipali ore Pb, the parent is assumed to be late Archean-lower Proterozoic soda granite.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号