首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13336篇
  免费   2343篇
  国内免费   3184篇
测绘学   933篇
大气科学   2974篇
地球物理   3337篇
地质学   6438篇
海洋学   1581篇
天文学   801篇
综合类   1329篇
自然地理   1470篇
  2024年   52篇
  2023年   224篇
  2022年   521篇
  2021年   649篇
  2020年   519篇
  2019年   582篇
  2018年   626篇
  2017年   623篇
  2016年   747篇
  2015年   596篇
  2014年   783篇
  2013年   738篇
  2012年   728篇
  2011年   713篇
  2010年   813篇
  2009年   706篇
  2008年   674篇
  2007年   651篇
  2006年   493篇
  2005年   509篇
  2004年   388篇
  2003年   378篇
  2002年   355篇
  2001年   420篇
  2000年   436篇
  1999年   630篇
  1998年   593篇
  1997年   536篇
  1996年   509篇
  1995年   440篇
  1994年   383篇
  1993年   366篇
  1992年   300篇
  1991年   238篇
  1990年   184篇
  1989年   151篇
  1988年   153篇
  1987年   81篇
  1986年   77篇
  1985年   48篇
  1984年   37篇
  1983年   28篇
  1982年   41篇
  1981年   33篇
  1980年   25篇
  1979年   22篇
  1978年   7篇
  1976年   9篇
  1973年   5篇
  1958年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Qin  Jin  Bai  Hongying  Su  Kai  Liu  Rongjuan  Zhai  Danping  Wang  Jun  Li  Shuheng  Zhou  Qi  Li  Bin 《Theoretical and Applied Climatology》2018,133(1-2):633-645
Theoretical and Applied Climatology - Previous dendroclimatical studies have been based on the relationship between tree growth and instrumental climate data recorded at lower land meteorological...  相似文献   
952.
李武阶  车钦  姜杰  祝赢  陈赛男 《暴雨灾害》2018,31(5):455-461

利用2013年11月-2014年11月ECMWF全球集合预报的51个成员降水预报资料和湖北省78个国家气象站逐日降水实况,对集合平均值、分位值、概率匹配平均值、众数(Mode值)等10种集合统计量在湖北省不同预报分区内的降水预报效果分别进行检验评估。在此基础上,采用在不同降水量级上选取TS评分最优的集合统计量的原则,设计出适用湖北降水预报的最佳集合统计量集成方案,并检验了该方法在2015年和2016年6-8月湖北降水预报的应用效果。结果表明:将集合统计量集成法应用于湖北降水预报时,集合统计量集成方案应随着预报分区的改变而改变;改进后的ECMWF集合统计量集成方案对湖北72 h内大雨及以上降水预报的TS评分均有不同程度的提高,且空报率和漏报率总体上有所降低;与ECMWF确定性预报相比,ECMWF集合统计量集成预报产品对湖北24 h内各降水量级的预报均优于ECMWF确定性预报,且对湖北72 h内的暴雨预报准确率均高于ECMWF确定性预报。

  相似文献   
953.
近几十年来全球变暖受到越来越广泛的关注,然而全球变暖从1998年开始趋缓,但青藏高原却呈现加速增暖的趋势。本文基于前人研究,系统回顾了青藏高原气温、积雪、降水和大气热源等四方面在全球变暖背景下的变化,指出高原的加速增温导致了积雪迅速融化,降水明显增多的同时,高原热源却呈现减弱趋势。  相似文献   
954.
Detection and Correction of AMSR-E Radio-Frequency Interference   总被引:2,自引:0,他引:2       下载免费PDF全文
Radio-frequency interference (RFI) affects greatly the quality of the data and retrieval products from space-borne microwave radiometry. Analysis of the Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-E) Aqua satellite observations reveals very strong and widespread RFI contam- inations on the C- and X-band data. Fortunately, the strong and moderate RFI signals can be easily identified using an index on observed brightness temperature spectrum. It is the weak RFI that is diffi- cult to be separated from the nature surface emission. In this study, a new algorithm is proposed for RFI detection and correction. The simulated brightness temperature is used as a background signal (B) and a departure of the observation from the background (O-B) is utilized for detection of RFI. It is found that the O-B departure can result from either a natural event (e.g., precipitation or flooding) or an RFI signal. A separation between the nature event and RFI is further realized based on the scattering index (SI). A positive SI index and low brightness temperatures at high frequencies indicate precipitation. In the RFI correction, a relationship between AMSR-E measurements at 10.65 GHz and those at 18.7 or 6.925 GHz is first developed using the AMSR-E training data sets under RFI-free conditions. Contamination of AMSR-E measurements at 10.65 GHz is then predicted from the RFI-free measurements at 18.7 or 6.925 GHz using this relationship. It is shown that AMSR-E measurements with the RFI-correction algorithm have better agreement with simulations in a variety of surface conditions.  相似文献   
955.
This paper analyzes surface climate variability in the climate forecast system reanalysis (CFSR) recently completed at the National Centers for Environmental Prediction (NCEP). The CFSR represents a new generation of reanalysis effort with first guess from a coupled atmosphere?Cocean?Csea ice?Cland forecast system. This study focuses on the analysis of climate variability for a set of surface variables including precipitation, surface air 2-m temperature (T2m), and surface heat fluxes. None of these quantities are assimilated directly and thus an assessment of their variability provides an independent measure of the accuracy. The CFSR is compared with observational estimates and three previous reanalyses (the NCEP/NCAR reanalysis or R1, the NCEP/DOE reanalysis or R2, and the ERA40 produced by the European Centre for Medium-Range Weather Forecasts). The CFSR has improved time-mean precipitation distribution over various regions compared to the three previous reanalyses, leading to a better representation of freshwater flux (evaporation minus precipitation). For interannual variability, the CFSR shows improved precipitation correlation with observations over the Indian Ocean, Maritime Continent, and western Pacific. The T2m of the CFSR is superior to R1 and R2 with more realistic interannual variability and long-term trend. On the other hand, the CFSR overestimates downward solar radiation flux over the tropical Western Hemisphere warm pool, consistent with a negative cloudiness bias and a positive sea surface temperature bias. Meanwhile, the evaporative latent heat flux in CFSR appears to be larger than other observational estimates over most of the globe. A few deficiencies in the long-term variations are identified in the CFSR. Firstly, dramatic changes are found around 1998?C2001 in the global average of a number of variables, possibly related to the changes in the assimilated satellite observations. Secondly, the use of multiple streams for the CFSR induces spurious jumps in soil moisture between adjacent streams. Thirdly, there is an inconsistency in long-term sea ice extent variations over the Arctic regions between the CFSR and other observations with the CFSR showing smaller sea ice extent before 1997 and larger extent starting in 1997. These deficiencies may have impacts on the application of the CFSR for climate diagnoses and predictions. Relationships between surface heat fluxes and SST tendency and between SST and precipitation are analyzed and compared with observational estimates and other reanalyses. Global mean fields of surface heat and water fluxes together with radiation fluxes at the top of the atmosphere are documented and presented over the entire globe, and for the ocean and land separately.  相似文献   
956.
In this study, interdecadal and interannual variations of the South Asian high (SAH) and the western Pacific subtropical high (WPSH), as well as their relationships with the summer climate over Asian and Pacific regions, are addressed. The variations of SAH and WPSH are objectively measured by the first singular value decomposition (SVD) mode of geopotential heights at the 100- and 500-hPa levels. The first SVD mode of summertime 100- and 500-hPa geopotential heights represents well the relationship between the variations of SAH and WPSH. Both SAH and WPSH exhibit large interannual variability and experienced an apparent long-term change in 1987. The WPSH intensifies and extends westward when SAH intensifies and extends eastward, and vice versa. The India?CBurma trough weakens when WPSH intensifies. The changes in SAH and WPSH at various levels are linked to broad-scale increases in tropical tropospheric temperature and geopotential height. When SAH and WPSH strengthen, monsoon flow becomes weaker over eastern Asia. In the meantime, precipitation decreases over eastern South China Sea, Philippines, the Philippine Sea and northeastern Asia, but increases over China, Korea, Japan and the ocean domain east of Japan. Similar features are mostly found on both interdecadal and interannual timescales, but are more evident on interannual timescale.  相似文献   
957.
There has been a rapid growth of reactive nitrogen (Nr) deposition over the world in the past decades. The Pearl River Delta region is one of the areas with high loading of nitrogen deposition. But there are still large uncertainties in the study of dry deposition because of its complex processes of physical chemistry and vegetation physiology. At present, the forest canopy parameterization scheme used in WRF-Chem model is a single-layer “big leaf” model, and the simulation of radiation transmission and energy balance in forest canopy is not detailed and accurate. Noah-MP land surface model (Noah-MP) is based on the Noah land surface model (Noah LSM) and has multiple parametric options to simulate the energy, momentum, and material interactions of the vegetation-soil-atmosphere system. Therefore, to investigate the improvement of the simulation results of WRF-Chem on the nitrogen deposition in forest area after coupled with Noah-MP model and to reduce the influence of meteorological simulation biases on the dry deposition velocity simulation, a dry deposition single-point model coupled by Noah- MP and the WRF-Chem dry deposition module (WDDM) was used to simulate the deposition velocity (Vd). The model was driven by the micro-meteorological observation of the Dinghushan Forest Ecosystem Location Station. And a series of numerical experiments were carried out to identify the key processes influencing the calculation of dry deposition velocity, and the effects of various surface physical and plant physiological processes on dry deposition were discussed. The model captured the observed Vd well, but still underestimated the Vd. The self-defect of Wesely scheme applied by WDDM, and the inaccuracy of built-in parameters in WDDM and input data for Noah-MP (e.g. LAI) were the key factors that cause the underestimation of Vd. Therefore, future work is needed to improve model mechanisms and parameterization.  相似文献   
958.
This work aims, as a first step, to analyze rainfall variability in Northern Algeria, in particular extreme events, during the period from 1940 to 2010. Analysis of annual rainfall shows that stations in the northwest record a significant decrease in rainfall since the 1970s. Frequencies of rainy days for each percentile (5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th) and each rainfall interval class (1–5, 5–10, 10–20, 20–50, and ≥50 mm) do not show a significant change in the evolution of daily rainfall. The Tenes station is the only one to show a significant decrease in the frequency of rainy days up to the 75th percentile and for the 10–20-mm interval class. There is no significant change in the temporal evolution of extreme events in the 90th, 95th, and 99th percentiles. The relationships between rainfall variability and general atmospheric circulation indices for interannual and extreme event variability are moderately influenced by the El Niño-Southern Oscillation and Mediterranean Oscillation. Significant correlations are observed between the Southern Oscillation Index and annual rainfall in the northwestern part of the study area, which is likely linked with the decrease in rainfall in this region. Seasonal rainfall in Northern Algeria is affected by the Mediterranean Oscillation and North Atlantic Oscillation in the west. The ENSEMBLES regional climate models (RCMs) are assessed using the bias method to test their ability to reproduce rainfall variability at different time scales. The Centre National de Recherches Météorologiques (CNRM), Czech Hydrometeorological Institute (CHMI), Eidgenössische Technische Hochschule Zürich (ETHZ), and Forschungszentrum Geesthacht (GKSS) models yield the least biased results.  相似文献   
959.
The Tibetan Plateau (TP) surfaces have been experiencing an overall rapid warming and wetting while wind speed and solar radiation have been declining in the last three decades. This study investigated how climate changes influenced the hydrological cycle on the TP during 1984??2006. To facilitate the analysis, a land surface model was used to simulate surface water budget at all CMA (China Meteorological Administration) stations on the TP. The simulated results were first validated against observed ground temperature and observation-derived heat flux on the western TP and observed discharge trends on the eastern TP. The response of evaporation and runoff to the climate changes was then analyzed. Major finding are as follows. (1) Surface water balance has been changed in recent decades. Observed precipitation shows insignificant increasing trends in central TP and decreasing trends along the TP periphery while evaporation shows overall increasing trends, leading to decreased discharge at major TP water resource areas (semi-humid and humid zones in the eastern and southern TP). (2) At the annual scale, evaporation is water-limited in dry areas and energy-limited (radiation and air temperature) in wet areas; these constraints can be interpreted by the Budyko-curve. Evaporation in autumns and winters was strongly controlled by soil water storage in summers, weakening the dependence of evaporation on precipitation at seasonal scales. (3) There is a complementary effect between the simulated actual evaporation and potential evaporation, but this complementary relationship may deviate from Bouchet??s hypothesis when vapor pressure deficit (or air temperature) is too low, which suppresses the power of vapor transfer.  相似文献   
960.
Subfossil pollen and plant macrofossil data derived from 14C-dated sediment profiles can provide quantitative information on glacial and interglacial climates. The data allow climate variables related to growing-season warmth, winter cold, and plant-available moisture to be reconstructed. Continental-scale reconstructions have been made for the mid-Holocene (MH, around 6 ka) and Last Glacial Maximum (LGM, around 21 ka), allowing comparison with palaeoclimate simulations currently being carried out as part of the fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. The synthesis of the available MH and LGM climate reconstructions and their uncertainties, obtained using modern-analogue, regression and model-inversion techniques, is presented for four temperature variables and two moisture variables. Reconstructions of the same variables based on surface-pollen assemblages are shown to be accurate and unbiased. Reconstructed LGM and MH climate anomaly patterns are coherent, consistent between variables, and robust with respect to the choice of technique. They support a conceptual model of the controls of Late Quaternary climate change whereby the first-order effects of orbital variations and greenhouse forcing on the seasonal cycle of temperature are predictably modified by responses of the atmospheric circulation and surface energy balance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号