首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30598篇
  免费   383篇
  国内免费   272篇
测绘学   646篇
大气科学   2895篇
地球物理   6698篇
地质学   11818篇
海洋学   2071篇
天文学   5381篇
综合类   42篇
自然地理   1702篇
  2018年   291篇
  2017年   266篇
  2016年   416篇
  2015年   302篇
  2014年   424篇
  2013年   1235篇
  2012年   519篇
  2011年   796篇
  2010年   649篇
  2009年   931篇
  2008年   839篇
  2007年   803篇
  2006年   847篇
  2005年   732篇
  2004年   761篇
  2003年   719篇
  2002年   722篇
  2001年   597篇
  2000年   619篇
  1999年   583篇
  1998年   576篇
  1997年   599篇
  1996年   536篇
  1995年   499篇
  1994年   475篇
  1993年   468篇
  1992年   524篇
  1991年   481篇
  1990年   517篇
  1989年   428篇
  1988年   470篇
  1987年   542篇
  1986年   454篇
  1985年   587篇
  1984年   672篇
  1983年   692篇
  1982年   603篇
  1981年   597篇
  1980年   587篇
  1979年   557篇
  1978年   553篇
  1977年   496篇
  1976年   478篇
  1975年   470篇
  1974年   501篇
  1973年   502篇
  1972年   358篇
  1971年   315篇
  1970年   258篇
  1968年   237篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
991.
Summary From the photometric observations of a sample of late dwarf common proper motion pairs it may be inferred that about 30%–50% of such systems contain one or more additional stellar components. A small fraction of such systems have separations in excess of 5000 A.U.  相似文献   
992.
This all-sky catalogue of unambiguous rotation measure (from a Faraday-thin, one-component, spectrum selection) for 674 galaxies or quasars has been compiled, ordered, and edited from the available literature. All the known applications of the RM distribution toward foreground objects in the Galaxy (i.e., magnetic field in 4 nearby spiral arms and in 4 nearby interstellar magnetic bubbles) have also been catalogued.  相似文献   
993.
UVIS occultation data show clumping in Saturn’s F ring and at the B ring outer edge, indicating aggregation and disaggregation at these locations that are perturbed by Prometheus and by Mimas. The inferred timescales range from hours to months. Occultation profiles of the edge show wide variability, indicating perturbations by local mass aggregations. Structure near the B ring edge is seen in power spectral analysis at scales 200–2000 m. Similar structure is also seen at the strongest density waves, with significance increasing with resonance strength. For the B ring outer edge, the strongest structure is seen at longitudes 90° and 270° relative to Mimas. This indicates a direct relation between the moon and the ring clumping. We propose that the collective behavior of the ring particles resembles a predator–prey system: the mean aggregate size is the prey, which feeds the velocity dispersion; conversely, increasing dispersion breaks up the aggregates. Moons may trigger clumping by streamline crowding, which reduces the relative velocity, leading to more aggregation and more clumping. Disaggregation may follow from disruptive collisions or tidal shedding as the clumps stir the relative velocity. For realistic values of the parameters this yields a limit cycle behavior, as for the ecology of foxes and hares or the “boom-bust” economic cycle. Solving for the long-term behavior of this forced system gives a periodic response at the perturbing frequency, with a phase lag roughly consistent with the UVIS occultation measurements. We conclude that the agitation by the moons in the F ring and at the B ring outer edge drives aggregation and disaggregation in the forcing frame. This agitation of the ring material may also allow fortuitous formation of solid objects from the temporary clumps, via stochastic processes like compaction, adhesion, sintering or reorganization that drives the denser parts of the aggregate to the center or ejects the lighter elements. Any of these more persistent objects would then orbit at the Kepler rate. We would also expect the formation of clumps and some more permanent objects at the other perturbed regions in the rings… including satellite resonances, shepherded ring edges, and near embedded objects like Pan and Daphnis (where the aggregation/disaggregation cycles are forced similar to Prometheus forcing of the F ring).  相似文献   
994.
995.
996.
The availability of vector-magnetogram sequences with sufficient accuracy and cadence to estimate the temporal derivative of the magnetic field allows us to use Faraday’s law to find an approximate solution for the electric field in the photosphere, using a Poloidal–Toroidal Decomposition (PTD) of the magnetic field and its partial time derivative. Without additional information, however, the electric field found from this technique is under-determined – Faraday’s law provides no information about the electric field that can be derived from the gradient of a scalar potential. Here, we show how additional information in the form of line-of-sight Doppler-flow measurements, and motions transverse to the line-of-sight determined with ad-hoc methods such as local correlation tracking, can be combined with the PTD solutions to provide much more accurate solutions for the solar electric field, and therefore the Poynting flux of electromagnetic energy in the solar photosphere. Reliable, accurate maps of the Poynting flux are essential for quantitative studies of the buildup of magnetic energy before flares and coronal mass ejections.  相似文献   
997.
Our study deals with the correlations between the solar activity on the one hand and the solar irradiance above the Earth’s atmosphere and at ground level on the other. We analyzed the combined ACRIM I+II time series of the total solar irradiance (TSI), the Mauna Loa time series of terrestrial insolation data, and data of terrestrial cosmic ray fluxes. We find that the correlation between the TSI and the sunspot number is strongly non-linear. We interpret this as the net balance between brightening by faculae and darkening by sunspots where faculae dominate at low activity and sunspots dominate at high activity. Such a behavior is hitherto known from stellar analogs of the Sun in a statistical manner. We perform the same analysis for the Mauna Loa data of terrestrial insolation. Here we find that the linear relation between sunspot number and insolation shows more than 1% rise in insolation by sunspot number variations which is much stronger than for the TSI. Our conclusion is that the Earth atmosphere acts as an amplifier between space and ground, and that the amplification is probably controlled by solar activity. We suspect the cosmic rays intensity as the link between solar activity and atmospheric transparency. A Fourier analysis of the time series of insolation shows three dominant peaks: 10.5, 20.4, and 14.0 years. As a matter of fact, the cosmic rays data show the same pattern of significant peaks: 10.7, 22.4, and 14.9 years. This analogy supports our idea that the cosmic rays variation has influence on the transparency of the Earth atmosphere.  相似文献   
998.
Properties of dust-acoustic solitary waves in a warm dusty plasma are analyzed by using the hydrodynamic model for massive dust grains, electrons, ions, and streaming ion beam. For this purpose, Korteweg-de Vries (KdV) equation for the first-order perturbed potential and linear inhomogeneous KdV-type equation for the second-order perturbed potential have been derived and their analytical solutions are presented. In order to show the characteristics of the dust-acoustic solitary waves are influenced by the plasma parameters, the relevant numerical analysis of the KdV and linear inhomogeneous KdV-type equations are obtained. The dust-acoustic solitary waves, as predicted here, may be associated with the nonlinear structures caused by the interaction of polar jets with the interstellar medium, which is known as Herbig-Haro objects.  相似文献   
999.
We describe the imaging quality of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) as measured during the ground calibration of the instrument. We describe the calibration techniques and report our results for the final configuration of HMI. We present the distortion, modulation transfer function, stray light, image shifts introduced by moving parts of the instrument, best focus, field curvature, and the relative alignment of the two cameras. We investigate the gain and linearity of the cameras, and present the measured flat field.  相似文献   
1000.
GETEMME (Gravity, Einstein??s Theory, and Exploration of the Martian Moons?? Environment), a mission which is being proposed in ESA??s Cosmic Vision program, shall be launched for Mars on a Soyuz Fregat in 2020. The spacecraft will initially rendezvous with Phobos and Deimos in order to carry out a comprehensive mapping and characterization of the two satellites and to deploy passive Laser retro-reflectors on their surfaces. In the second stage of the mission, the spacecraft will be transferred into a lower 1500-km Mars orbit, to carry out routine Laser range measurements to the reflectors on Phobos and Deimos. Also, asynchronous two-way Laser ranging measurements between the spacecraft and stations of the ILRS (International Laser Ranging Service) on Earth are foreseen. An onboard accelerometer will ensure a high accuracy for the spacecraft orbit determination. The inversion of all range and accelerometer data will allow us to determine or improve dramatically on a host of dynamic parameters of the Martian satellite system. From the complex motion and rotation of Phobos and Deimos we will obtain clues on internal structures and the origins of the satellites. Also, crucial data on the time-varying gravity field of Mars related to climate variation and internal structure will be obtained. Ranging measurements will also be essential to improve on several parameters in fundamental physics, such as the Post-Newtonian parameter ?? as well as time-rate changes of the gravitational constant and the Lense-Thirring effect. Measurements by GETEMME will firmly embed Mars and its satellites into the Solar System reference frame.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号