首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   638篇
  免费   27篇
  国内免费   6篇
测绘学   13篇
大气科学   46篇
地球物理   154篇
地质学   251篇
海洋学   26篇
天文学   149篇
综合类   2篇
自然地理   30篇
  2023年   5篇
  2022年   6篇
  2021年   9篇
  2020年   15篇
  2019年   13篇
  2018年   39篇
  2017年   26篇
  2016年   39篇
  2015年   33篇
  2014年   40篇
  2013年   33篇
  2012年   38篇
  2011年   46篇
  2010年   34篇
  2009年   41篇
  2008年   44篇
  2007年   30篇
  2006年   29篇
  2005年   19篇
  2004年   21篇
  2003年   18篇
  2002年   10篇
  2001年   11篇
  2000年   9篇
  1999年   6篇
  1998年   5篇
  1997年   5篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   9篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1973年   1篇
  1961年   1篇
  1951年   1篇
  1940年   2篇
  1939年   1篇
  1937年   1篇
排序方式: 共有671条查询结果,搜索用时 31 毫秒
81.
Observations of the Virgo Cluster galaxy NGC 4569 in soft X-rays and in Hα reveal both an asymmetrically distributed hot gaseous halo and a giant filament of diffuse emission, respectively, extending from the same side of the disk, the latter one to at least 8.8 kpc. A deep longslit spectrum along the filament shows velocities systematically different from the systemic velocity of NGC 4569. With the inclination of the disk one can determine the Hα spur as a giant outflow in NGC 4569. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
82.
The notion of scalar strain in minerals is crucial for the formulation of P-V equations of state (EoS). A scalar strain, , holding for any crystal symmetry has been derived by a rigorous and general approach, and then used to develop the related phenomenological P-V EoS. , which depends on V and the trace of the G* G0 matrix, can be split into two components, M and , where the former takes values close to those of the scalar strain according to Birch. M, providing the main contribution (often larger than 80%) to , is appropriate for the formulation of an EoS as M/V behaves regularly in the limit of an unstrained configuration. The phenomenological EoS based on M shows the same dependence on the elastic parameters (bulk modulus and derivatives versus pressure) of the usual Birch-Murnaghan EoS, and yields comparable results. Slight deviations occur for low symmetry minerals. This work is meant to contribute (1) to shed light on the relationships between scalar strain and related P-V EoSs, and (2) to provide a most general EoS which includes, as a particular case, the Birch-Murnaghan model and explains why this latter is reliable for crystal symmetry other than the cubic one, for which it was originally derived.  相似文献   
83.
Peridotite xenoliths found in Cenozoic alkali basalts of northern Victoria Land, Antarctica, vary from fertile spinel-lherzolite to harzburgite. They often contain glass-bearing pockets formed after primary pyroxenes and spinel. Few samples are composite and consist of depleted spinel lherzolite crosscut by amphibole veins and/or lherzolite in contact with poikilitic wehrlite. Peridotite xenoliths are characterized by negative Al2O3–Mg# and TiO2–Mg# covariations of clino- and orthopyroxenes, low to intermediate HREE concentrations in clinopyroxene, negative Cr–Al trend in spinel, suggesting variable degrees of partial melting. Metasomatic overprint is evidenced by trace element enrichment in clinopyroxene and sporadic increase of Ti–Fetot. Preferential Nb, Zr, Sr enrichments in clinopyroxene associated with high Ti–Fetot contents constrain the metasomatic agent to be an alkaline basic melt. In composite xenoliths, clinopyroxene REE contents increase next to the veins suggesting metasomatic diffusion of incompatible element. Oxygen isotope data indicate disequilibrium conditions among clinopyroxene, olivine and orthopyroxene. The highest δ18O values are observed in minerals of the amphibole-bearing xenolith. The δ18Ocpx correlations with clinopyroxene modal abundance and geochemical parameters (e.g. Mg# and Cr#) suggest a possible influence of partial melting on oxygen isotope composition. Thermobarometric estimates define a geotherm of 80°C/GPa for the refractory lithosphere of NVL, in a pressure range between 1 and 2.5 GPa. Clinopyroxene microlites of melt pockets provide P–T data close to the anhydrous peridotite solidus and confirm that they originated from heating and decompression during transport in the host magma. All these geothermometric data constrain the mantle potential temperature to values of 1250–1350°C, consistent with the occurrence of mantle decompressional melting in a transtensive tectonic regime for the Ross Sea region.  相似文献   
84.
Relative sea level rise (RSLR) due to climate change and geodynamics represents the main threat for the survival of Venice, emerging today only 90 cm above the Northern Adriatic mean sea level (msl). The 25 cm RSLR occurred over the 20th century, consisting of about 12 cm of land subsidence and 13 cm of sea level rise, has increased the flood frequency by more than seven times with severe damages to the urban heritage. Reasonable forecasts of the RSLR expected to the century end must be investigated to assess the suitability of the Mo.S.E. project planned for the city safeguarding, i.e., the closure of the lagoon inlets by mobile barriers. Here we consider three RSLR scenarios as resulting from the past sea level rise recorded in the Northern Adriatic Sea, the IPCC mid-range A1B scenario, and the expected land subsidence. Available sea level measurements show that more than 5 decades are required to compute a meaningful eustatic trend, due to pseudo-cyclic 7–8 year long fluctuations. The period from 1890 to 2007 is characterized by an average rate of 0.12 ± 0.01 cm/year. We demonstrate that linear regression is the most suitable model to represent the eustatic process over these 117 year. Concerning subsidence, at present Venice is sinking due to natural causes at 0.05 cm/year. The RSLR is expected to range between 17 and 53 cm by 2100, and its repercussions in terms of flooding frequency are associated here to each scenario. In particular, the frequency of tides higher than 110 cm, i.e., the value above which the gates would close the lagoon to the sea, will increase from the nowadays 4 times per year to a range between 20 and 250. These projections provide a large spread of possible conditions concerning the survival of Venice, from a moderate nuisance to an intolerable aggression. Hence, complementary solutions to Mo.S.E. may well be investigated.  相似文献   
85.
By examining the absolute magnitude (H) distributions (hereafter HD) of the cold and hot populations in the Kuiper belt and of the Trojans of Jupiter, we find evidence that the Trojans have been captured from the outer part of the primordial trans-neptunian planetesimal disk. We develop a sketch model of the HDs in the inner and outer parts of the disk that is consistent with the observed distributions and with the dynamical evolution scenario known as the ‘Nice model’. This leads us to predict that the HD of the hot population should have the same slope of the HD of the cold population for 6.5<H<9, both as steep as the slope of the Trojans' HD. Current data partially support this prediction, but future observations are needed to clarify this issue. Because the HD of the Trojans rolls over at H∼9 to a collisional equilibrium slope that should have been acquired when the Trojans were still embedded in the primordial trans-neptunian disk, our model implies that the same roll-over should characterize the HDs of the Kuiper belt populations, in agreement with the results of Bernstein et al. [Bernstein, G.M., and 5 colleagues, 2004. Astron. J. 128, 1364-1390] and Fuentes and Holman [Fuentes, C.I., Holman, M.J., 2008. Astron. J. 136, 83-97]. Finally, we show that the constraint on the total mass of the primordial trans-neptunian disk imposed by the Nice model implies that it is unlikely that the cold population formed beyond 35 AU.  相似文献   
86.
Establishing connections between meteorites and their parent asteroids is an important goal of planetary science. Several links have been proposed in the past, including a spectroscopic match between basaltic meteorites and (4) Vesta, that are helping scientists understand the formation and evolution of the Solar System bodies. Here we show that the shocked L chondrite meteorites, which represent about two thirds of all L chondrite falls, may be fragments of a disrupted asteroid with orbital semimajor axis a=2.8 AU. This breakup left behind thousands of identified 1–15 km asteroid fragments known as the Gefion family. Fossil L chondrite meteorites and iridium enrichment found in an ≈467 Ma old marine limestone quarry in southern Sweden, and perhaps also ∼5 large terrestrial craters with corresponding radiometric ages, may be tracing the immediate aftermath of the family-forming collision when numerous Gefion fragments evolved into the Earth-crossing orbits by the 5:2 resonance with Jupiter. This work has major implications for our understanding of the source regions of ordinary chondrite meteorites because it implies that they can sample more distant asteroid material than was previously thought possible.  相似文献   
87.
How big were the first planetesimals? We attempt to answer this question by conducting coagulation simulations in which the planetesimals grow by mutual collisions and form larger bodies and planetary embryos. The size frequency distribution (SFD) of the initial planetesimals is considered a free parameter in these simulations, and we search for the one that produces at the end objects with a SFD that is consistent with Asteroid belt constraints. We find that, if the initial planetesimals were small (e.g. km-sized), the final SFD fails to fulfill these constraints. In particular, reproducing the bump observed at diameter in the current SFD of the asteroids requires that the minimal size of the initial planetesimals was also ∼100 km. This supports the idea that planetesimals formed big, namely that the size of solids in the proto-planetary disk “jumped” from sub-meter scale to multi-kilometer scale, without passing through intermediate values. Moreover, we find evidence that the initial planetesimals had to have sizes ranging from 100 to several 100 km, probably even 1000 km, and that their SFD had to have a slope over this interval that was similar to the one characterizing the current asteroids in the same size range. This result sets a new constraint on planetesimal formation models and opens new perspectives for the investigation of the collisional evolution in the Asteroid and Kuiper belts as well as of the accretion of the cores of the giant planets.  相似文献   
88.
Observations of turbulent velocity dispersions in the H  i component of galactic discs show a characteristic floor in galaxies with low star formation rates and within individual galaxies the dispersion profiles decline with radius. We carry out several high-resolution adaptive mesh simulations of gaseous discs embedded within dark matter haloes to explore the roles of cooling, star formation, feedback, shearing motions and baryon fraction in driving turbulent motions. In all simulations the disc slowly cools until gravitational and thermal instabilities give rise to a multiphase medium in which a large population of dense self-gravitating cold clouds are embedded within a warm gaseous phase that forms through shock heating. The diffuse gas is highly turbulent and is an outcome of large-scale driving of global non-axisymmetric modes as well as cloud–cloud tidal interactions and merging. At low star formation rates these processes alone can explain the observed H  i velocity dispersion profiles and the characteristic value of  ∼10 km s−1  observed within a wide range of disc galaxies. Supernovae feedback creates a significant hot gaseous phase and is an important driver of turbulence in galaxies with a star formation rate per unit area  ≳10−3 M yr−1 kpc−2  .  相似文献   
89.
The Apuseni Mountains are located between the Pannonian Basin and the Transylvanian Basin along a direction of SE convergence with the Carpathian belt. A flexural model based on the cylindrical bending of a semi-infinite, isostatically supported, thin elastic plate is here examined with the Apuseni playing the role of flexural bulge, and under the assumption that the plate is deforming under the action of a vertical shear force and a bending moment applied at the end of the plate, beneath the Carpathians. The model yields estimates of the plate thickness ranging between 13 and 14.5 km, depending on the assumed density contrast between crust/sediments and mantle providing buoyancy. The vertical shear force which is necessary to bend the plate is in the range between 60 and 300 × 1011 N m− 1, depending on the assumed density contrast. This force is shown to be modelled by a gravitational ‘slab pull’ force, using model parameters derived from seismic tomography. If the height of the flexural bulge, after correction for erosion, is allowed to increase, the model yields an estimate of the horizontal strain rate at the top of the bulge. For example, 5 mm/yr vertical change of the flexural bulge of a 14 km thick plate results in a horizontal deformation rate of approximately 7 nanostrain/yr at the top of the bulge, a value which is at the threshold of sensitivity of continuous GPS measurements. Different vertical rates will change the horizontal strain rate almost proportionally.  相似文献   
90.
The maximum entropy method (MEM) is used here to get an insight into the electron density [ρ(r)] of phengites 2M 1 and 3T, paying special attention to the M1-formally empty site and charge distribution. Room temperature single crystal X-ray diffraction data have been used as experimental input for MEM. The results obtained by MEM have been compared with those from conventional structure refinement which, in turn, has provided the prior-electron density to start the entropy maximization process. MEM reveals a comparatively non-committal approach, able to produce information related to the M1-site fractional occupancy, and yields results consistent with those from the difference Fourier synthesis, but free of the uncertainties due to the abrupt truncation of the series. The charge distribution is investigated by means of the notion of ‘‘site basin’’, i.e., those site-centered volumes delimited by a surface such as ∇ρ·= 0. In particular, we observe: (1) the overall partitioning of the basin total charge between cation and anion sites, and the interlayer site charge seems to depend on sample composition, and (2) the apical-oxygen plane total basin charge and hydroxyl basin charge are presumably related to the polytype. The MEM-determined electron density does not allow full exploration of the critical points for very complex structures as micas, insofar as conventional room temperature experimental diffraction data are used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号