首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   3篇
测绘学   3篇
大气科学   5篇
地球物理   28篇
地质学   33篇
海洋学   28篇
自然地理   5篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   8篇
  2011年   8篇
  2010年   11篇
  2009年   5篇
  2008年   2篇
  2007年   7篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有102条查询结果,搜索用时 156 毫秒
21.
22.
Nonphysical pressure oscillations are observed in finite element calculations of Biot's poroelastic equations in low‐permeable media. These pressure oscillations may be understood as a failure of compatibility between the finite element spaces, rather than elastic locking. We present evidence to support this view by comparing and contrasting the pressure oscillations in low‐permeable porous media with those in low‐compressible porous media. As a consequence, it is possible to use established families of stable mixed elements as candidates for choosing finite element spaces for Biot's equations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
23.
Throughout the last 1.1 million years repeated glaciations have modified the southern Fennoscandian landscape and the neighbouring continental shelf into their present form. The glacigenic erosion products derived from the Fennoscandian landmasses were transported to the northern North Sea and the SE Nordic Seas continental margin. The prominent sub‐marine Norwegian Channel trough, along the south coast of Norway, was the main transport route for the erosion products between 1.1 and 0.0 Ma. Most of these erosion products were deposited in the North Sea Fan, which reaches a maximum thickness of 1500 m and has nearly 40 000 km3 of sediments. About 90% of the North Sea Fan sediments have been deposited during the last 500 000 years, in a time period when fast‐moving ice streams occupied the Norwegian Channel during each glacial stage. Back‐stripping the sediment volumes in the northern North Sea and SE Nordic Seas sink areas, including the North Sea Fan, to their assumed Fennoscandian source area gives an average vertical erosion of 164 m for the 1.1–0.0 Ma time period. The average 1.1–0.0 Ma erosion rate in the Fennoscandian source area is estimated to be 0.15 mm a?1. We suggest, however, that large variations in erosion rates have existed through time and that the most intense Fennoscandian landscape denudation occurred during the time period of repeated shelf edge ice advances, namely from Marine Isotope Stage 12 (c. 0.5 Ma) onwards.  相似文献   
24.
Computational Geosciences - Kriging is a standard method for conditioning surfaces to observations. Kriging works for vertical wells, but may produce surfaces that cross horizontal wells between...  相似文献   
25.
Kriging with Inequality Constraints   总被引:1,自引:0,他引:1  
A Gaussian random field with an unknown linear trend for the mean is considered. Methods for obtaining the distribution of the trend coefficients given exact data and inequality constraints are established. Moreover, the conditional distribution for the random field at any location is calculated so that predictions using e.g. the expectation, the mode, or the median can be evaluated and prediction error estimates using quantiles or variance can be obtained. Conditional simulation techniques are also provided.  相似文献   
26.
The oil content in the sediment and the marine life along the arctic shores of Van Mijenfjord, Spitzbergen, were investigated about two years after a spill from diesel storage tanks. High values of oil were recorded in the sediment along the shore near the tanks. The shore fauna is generally poor in these areas and the only biological effect detected was the disappearance of the amphipod Gammarus setosus from the surface layers.  相似文献   
27.
The dynamic response of unreinforced concrete structures is studied taking account of initiation, extension, closing and reopening of so-called discrete cracks. The computational procedure is based on the finite-element method and is at present restricted to two-dimensional situations. The discrete cracks are simulated by separation of originally adjacent finite elements. An equivalent tensile-strength criterion is used for the initiation and extension of the cracks which are assumed to propagate perpendicularly to the principal tensile stress. If this direction does not coincide with the interelement boundaries of the finite-element mesh, the latter is automatically altered. Between elements being separated by a crack special ‘crack elements’ are introduced, which take account of the stress transfer by aggregate interlock. The equations of motion are integrated numerically using an explicit formulation. The procedures outlined are demonstrated on a simplified cross-section of a concrete gravity dam subjected to horizontal earthquake excitation.  相似文献   
28.
Post‐wildfire runoff and erosion are major concerns in fire‐prone landscapes around the world, but these hydro‐geomorphic responses have been found to be highly variable and difficult to predict. Some variations have been observed to be associated with landscape aridity, which in turn can influence soil hydraulic properties. However, to date there has been no attempt to systematically evaluate the apparent relations between aridity and post‐wildfire runoff. In this study, five sites in a wildfire burnt area were instrumented with rainfall‐runoff plots across an aridity index (AI) gradient. Surface runoff and effective rainfall were measured over 10 months to allow investigation of short‐ (peak runoff) and longer‐term (runoff ratio) runoff characteristics over the recovery period. The results show a systematic and strong relation between aridity and post‐wildfire runoff. The average runoff ratio at the driest AI site (33.6%) was two orders of magnitude higher than at the wettest AI site (0.3%). Peak runoff also increased with AI, with up to a thousand‐fold difference observed during one event between the driest and wettest sites. The relation between AI, peak 15‐min runoff (Q15) and peak 15‐min rainfall intensity (I15) (both in mm h‐1) could be quantified by the equation: Q15 = 0.1086I15 × AI 2.691 (0.65<AI<1.80, 0<I15<45) (adjusted r2 = 0.84). The runoff ratios remained higher at drier AI sites (AI 1.24 and 1.80) throughout the monitoring period, suggesting higher AI also lengthens the window of disturbance after wildfire. The strong quantifiable link which this study has determined between AI and post‐wildfire surface runoff could greatly improve our capacity to predict the magnitude and location of hydro‐geomorphic processes such as flash floods and debris flows following wildfire, and may help explain aridity‐related patterns of soil properties in complex upland landscapes. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
29.
30.
Research shows that water repellency is a key hydraulic property that results in reduced infiltration rates in burned soils. However, more work is required in order to link the hydrological behaviour of water repellent soils to observed runoff responses at the plot and hillslope scale. This study used 5 M ethanol and water in disc infiltrometers to quantify the role of macropore flow and water repellency on spatial and temporal infiltration patterns in a burned soil at plot (<10 m2) scale in a wet eucalypt forest in south‐east Australia. In the first summer and winter after wildfire, an average of 70% and 60%, respectively, of the plot area was water repellent and did not contribute to infiltration. Macropores (r > 0·5 mm), comprising just 5·5% of the soil volume, contributed to 70% and 95%, respectively, of the field‐saturated and ponded hydraulic conductivity (Kp). Because flow occurred almost entirely via macropores in non‐repellent areas, this meant that less than 2·5% of the soil surface effectively contributed to infiltration. The hydraulic conductivity increased by a factor of up to 2·5 as the hydraulic head increased from 0 to 5 mm. Due to the synergistic effect of macropore flow and water repellency, the coefficient of variation (CV) in Kp was three times higher in the water‐repellent soil (CV = 175%) than under the simulated non‐repellent conditions (CV = 66%). The high spatial variability in Kp would act to reduce the effective infiltration rate during runoff generation at plot scale. Ponding, which tend to increase with increasing scale, activates flow through macropores and would raise the effective infiltration rates at larger scales. Field experiments designed to provide representative measurements of infiltration after fire in these systems must therefore consider both the inherent variability in hydraulic conductivity and the variability in infiltration caused by interactions between surface runoff and hydraulic conductivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号