首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
大气科学   2篇
地球物理   4篇
海洋学   20篇
自然地理   1篇
  2017年   1篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   1篇
  2008年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  1998年   1篇
  1995年   1篇
  1986年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
11.
3-D fluid-mud dynamics in the Jiaojiang Estuary, China   总被引:3,自引:0,他引:3  
A 3-D model has been developed for the muddy Jiaojiang Estuary and adjoining coastal waters, and verified against field observations. To simulate fluid-mud formation, the model uses a fine resolution grid near the bottom and involves coupling processes between hydrodynamics and fluid mud such as the sediment-induced buoyancy, increasing turbulent kinetic energy sink and kinematic viscosity, mixing by internal waves riding on the lutocline, and non-Newtonian properties of fluid mud. The effective hydrodynamic drag was reduced in the presence of fluid mud. It is shown that the estuary is infilled by tidal pumping and that longitudinal and transversal gradients of suspended sediment concentration, salinity, and currents control the formation of mud banks. Thus a 3-D model is necessary to estimate the fate of mud, although the model results are very sensitive to details of the parameterization of the hydrodynamics-mud feedback processes.  相似文献   
12.
Dynamics of the turbidity maximum in King Sound, tropical Western Australia   总被引:1,自引:0,他引:1  
King Sound is a 100-km-long embayment located in tropical northwestern Australia with a spring tidal range of 11 m. This is the second largest tide in the world after the Bay of Fundy in Canada. Intertidal areas cover about 800 km2. The upper reaches of the sound are turbid with fine suspended sediment concentration reaching 3 kg m−3. Field studies of the dynamics of water and fine sediment were carried out in the dry seasons of 1997 and 1998. The tide was a propagating wave, shoaling and dissipating by friction as it entered the sound. This mode of propagation generated an asymmetric tidal current with a stronger current at flood than at ebb. An evaporation-driven salinity maximum zone was found in the upper reaches of the sound, and this was also where the turbidity maximum occurred. Tidal pumping by the tidal asymmetry and, possibly, the biological filter formed by muddy marine snow, trapped the fine sediment in the upper regions of King Sound. Wind-driven waves contributed significantly to entrainment of bottom fine sediment, possibly through wave pumping of the sediment and not wave-induced orbital velocities. Field data suggest that erosion of bottom fine sediment was proportional to the sixth power of the tidal current and the third power of the wave height.  相似文献   
13.
For more than a century, coastal wetlands have been recognized for their ability to stabilize shorelines and protect coastal communities. However, this paradigm has recently been called into question by small-scale experimental evidence. Here, we conduct a literature review and a small meta-analysis of wave attenuation data, and we find overwhelming evidence in support of established theory. Our review suggests that mangrove and salt marsh vegetation afford context-dependent protection from erosion, storm surge, and potentially small tsunami waves. In biophysical models, field tests, and natural experiments, the presence of wetlands reduces wave heights, property damage, and human deaths. Meta-analysis of wave attenuation by vegetated and unvegetated wetland sites highlights the critical role of vegetation in attenuating waves. Although we find coastal wetland vegetation to be an effective shoreline buffer, wetlands cannot protect shorelines in all locations or scenarios; indeed large-scale regional erosion, river meandering, and large tsunami waves and storm surges can overwhelm the attenuation effect of vegetation. However, due to a nonlinear relationship between wave attenuation and wetland size, even small wetlands afford substantial protection from waves. Combining man-made structures with wetlands in ways that mimic nature is likely to increase coastal protection. Oyster domes, for example, can be used in combination with natural wetlands to protect shorelines and restore critical fishery habitat. Finally, coastal wetland vegetation modifies shorelines in ways (e.g. peat accretion) that increase shoreline integrity over long timescales and thus provides a lasting coastal adaptation measure that can protect shorelines against accelerated sea level rise and more frequent storm inundation. We conclude that the shoreline protection paradigm still stands, but that gaps remain in our knowledge about the mechanistic and context-dependent aspects of shoreline protection.  相似文献   
14.
The extent to which nations and regions can actively shape the future or must passively respond to global forces is a topic of relevance to current discourses on climate change. In Australia, climate change has been identified as the greatest threat to the ecological resilience of the Great Barrier Reef, but is exacerbated by regional and local pressures. We undertook a scenario analysis to explore how two key uncertainties may influence these threats and their impact on the Great Barrier Reef and adjacent catchments in 2100: whether (1) global development and (2) Australian development is defined and pursued primarily in terms of economic growth or broader concepts of human well-being and environmental sustainability, and in turn, how climate change is managed and mitigated. We compared the implications of four scenarios for marine and terrestrial ecosystem services and human well-being. The results suggest that while regional actions can partially offset global inaction on climate change until about mid-century, there are probable threshold levels for marine ecosystems, beyond which the Great Barrier Reef will become a fundamentally different system by 2100 if climate change is not curtailed. Management that can respond to pressures at both global and regional scales will be needed to maintain the full range of ecosystem services. Modest improvements in human well-being appear possible even while ecosystem services decline, but only where regional management is strong. The future of the region depends largely on whether national and regional decision-makers choose to be active future ‘makers’ or passive future ‘takers’ in responding to global drivers of change. We conclude by discussing potential avenues for using these scenarios further with the Great Barrier Reef region's stakeholders.  相似文献   
15.
The extreme 2010-2011 wet season resulted in highly elevated Burdekin River discharge into the Great Barrier Reef lagoon for a period of 200 days, resulting in a large flood plume extending >50km offshore and >100km north during peak conditions. Export of suspended sediment was dominated by clay and fine silt fractions and most sediment initially settled within ~10km of the river mouth. Biologically-mediated flocculation of these particles enhanced deposition in the initial low salinity zone. Fine silt and clay particles and nutrients remaining in suspension, were carried as far as 100km northward from the mouth, binding with planktonic and transparent exopolymer particulate matter to form large floc aggregates (muddy marine snow). These aggregates, due to their sticky nature, likely pose a risk to benthic organisms e.g. coral and seagrass through smothering, and also by contributing to increased turbidity during wind-induced resuspension events.  相似文献   
16.
Natural resource management approaches that deliver biodiversity conservation remain elusive, with evidence of a persistent implementation gap between biodiversity science and conservation projects. Scenarios have been identified as potentially useful in addressing the complex issues underlying this implementation gap, but have been infrequently applied to biodiversity conservation. Our paper reports on action co-research to develop, apply and assess the efficacy of scenarios within a community-based natural resource management (CBNRM) approach to biodiversity conservation at Mission Beach, a key site within the globally significant Wet Tropics bioregion. We focused on the capacity of scenarios to address the issues of contested interests and uncertainty, aiming specifically to engage the community to build a cohesive vision. The scenarios' headline messages included a projected substantial loss of habitat in coastal vegetation communities that are highly valued by all stakeholders. Our assessment identified that the use of scenarios fulfilled the intended aims, resulting in a vision for biodiversity conservation that has substantial community support. Three factors contributed to this efficacy of the scenarios: (1) the focus on threat; (2) biodiversity science integration; and (3) simplicity in presentation. Further investigation of the potential of scenarios as tools to overcome the implementation gap in biodiversity conservation is recommended.  相似文献   
17.
Human activities in the watersheds surrounding Maunalua Bay, Oahu, Hawaii, have lead to the degradation of coastal coral reefs affecting populations of marine organisms of ecological, economic and cultural value. Urbanization, stream channelization, breaching of a peninsula, seawalls, and dredging on the east side of the bay have resulted in increased volumes and residence time of polluted runoff waters, eutrophication, trapping of terrigenous sediments, and the formation of a permanent nepheloid layer. The ecosystem collapse on the east side of the bay and the prevailing westward longshore current have resulted in the collapse of the coral and coralline algae population on the west side of the bay. In turn this has lead to a decrease in carbonate sediment production through bio-erosion as well as a disintegration of the dead coral and coralline algae, leading to sediment starvation and increased wave breaking on the coast and thus increased coastal erosion. The field data and resulting coral reef ecohydrology model presented in this paper demonstrate and quantify the importance of biophysical processes leading to coral reef degradation as the result of urbanization. Coral restoration in Maunalua Bay will require an integrated ecosystem approach.  相似文献   
18.
The evolution of shallow, macro-tidal estuaries is a process that has been taking place since the last glaciation. It is site-specific and dependent on tides, wave climate and relative fluvial dominance. It is suggested that, because of the increased efficiency of the tidal pumping effect with decreasing water depth, these estuaries are geomorphologically unstable and may evolve much faster in the future than in the past as a result of human disturbances in the catchment, principally the damming of rivers and increasing erosion from poor land-use practices. These estuaries may become further destabilised by a sea level rise.  相似文献   
19.
Three years of temperature data along two transects extending to 90 m depth, at Palau, Micronesia, show twice-a-day thermocline vertical displacements of commonly 50–100 m, and on one occasion 270 m. The internal wave occurred at a number of frequencies. There were a number of spectral peaks at diurnal and semi-diurnal frequencies, as well as intermediate and sub-inertial frequencies, less so at the inertial frequency. At Palau the waves generally did not travel around the island because there was no coherence between internal waves on either side of the island. The internal waves at a site 30 km offshore were out-of-phase with those on the island slopes, suggesting that the waves were generated on the island slope and then radiated away. Palau Island was thus a source of internal wave energy for the surrounding ocean. A numerical model suggests that the tidal and low-frequency currents flowing around the island form internal waves with maximum wave amplitude on the island slope and that these waves radiate away from the island. The model also suggests that the headland at the southern tip of Palau prevents the internal waves to rotate around the island. The large temperature fluctuations (commonly daily fluctuations ≈10 °C, peaking at 20 °C) appear responsible for generating a thermal stress responsible for a biologically depauperate biological community on the island slopes at depths between 60 and 120 m depth.  相似文献   
20.
Trapping of fine sediment in a semi-enclosed bay, Palau, Micronesia   总被引:1,自引:0,他引:1  
Airai Bay, Palau, is a small (3 km2), semi-enclosed, mangrove-fringed, meso-tidal, coral lagoon on the southeast coast of Palau. It drains a small catchment area (26 km2) of highly erodible soils in an area with high annual rainfall (3.7 m). River floods are short-lived and the sediment load is very large, with suspended fine sediment concentration exceeding 1500 mg l−1. The resulting river plume is about 2 m thick. The brackish water residence time is about 7 days; during this period the plume remains a distinct surface feature even after river runoff has ceased. About 98% of the riverine fine sediment settles in Airai Bay, of which about 15–30% is deposited in the mangroves during river floods. This mud remains trapped in Airai Bay because the bay is protected from ocean swells and the tidal currents and locally generated wind waves are too small to resuspend the mud in quantity. The mud is smothering coral reefs, creating a phase shift from coral to fleshy algae dominance, and is even changing habitats by creating mud banks. The persistence of Airai Bay marine resources may not be possible without improved soil erosion control in the river catchment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号