This paper is concerned with the formation control problem of multiple underactuated surface vessels moving in a leader-follower formation.The formation is achieved by the follower to track a virtual target defined relative to the leader.A robust adaptive target tracking law is proposed by using neural network and backstepping techniques.The advantage of the proposed control scheme is that the uncertain nonlinear dynamics caused by Coriolis/centripetal forces,nonlinear damping,unmodeled hydrodynamics and disturbances from the environment can be compensated by on line learning.Based on Lyapunov analysis,the proposed controller guarantees the tracking errors converge to a small neighborhood of the origin.Simulation results demonstrate the effectiveness of the control strategy. 相似文献
During the self-weight penetration process of the suction foundation on the dense sand seabed, due to the shallow penetration depth, the excess seepage seawater from the outside to the inside of the foundation may cause the negative pressure penetration process failure. Increasing the self-weight penetration depth has become an important problem for the safe construction of the suction foundation. The new suction anchor foundation has been proposed, and the self-weight penetration characteristics of the traditional suction foundation and the new suction anchor foundation are studied and compared through laboratory experiments and analysis. For the above two foundation types, by considering five foundation diameters and two bottom shapes, 20 models are tested with the same penetration energy. The effects of different foundation diameters on the penetration depth, the soil plug characteristics, and the surrounding sand layer are studied. The results show that the penetration depth of the new suction foundation is smaller than that of the traditional suction foundation. With the same penetration energy, the penetration depth of the suction foundation becomes shallower as the diameter increases. The smaller the diameter of the suction foundation, the more likely it is to be fully plugged, and the smaller the height of the soil plug will be. In the stage of self-weight penetration, the impact cavity appears around the foundation, which may affect the stability of the suction foundation.
We conducted studies of phytoplankton and hydrological variables in a semi-enclosed bay in northern China to understand the spatial–temporal variability and relationship between these variables. Samples were collected during seven cruises in Jiaozhou Bay from November 2003 to October 2004, and were analyzed for temperature, nutrients and phytoplankton pigments. Pigments from eight possible phytoplankton classes (Diatoms, Dinoflagellates, Chlorophyceae, Prasinophyceae, Chrysophyceae, Haptophyceae, Cryptophyceae and Caynophyceae) were detected in surface water by high performance liquid chromatography (HPLC). Phytoplankton pigment and nutrient concentrations in Jiaozhou Bay were spatially and temporally variable, and most of them were highest in the northern and eastern parts of the sampling regions in spring (May) and summer (August), close to areas of shellfish culturing, river estuaries, dense population and high industrialization, reflecting human activities. Chlorophyll a was recorded in all samples, with an annual mean concentration of 1.892 μg L−1, and fucoxanthin was the most abundant accessory pigment, with a mean concentration of 0.791 μg L−1. The highest concentrations of chlorophyll a (15.299 μg L−1) and fucoxanthin (9.417 μg L−1) were observed in May 2004 at the station close to the Qingdao Xiaogang Ferry, indicating a spring bloom of Diatoms in this area. Although chlorophyll a and other biomarker pigments showed significant correlations, none of them showed strong correlations with temperature and nutrients, suggesting an apparent de-coupling between the pigments and these hydrological variables. The nutrient composition and phytoplankton community composition of Jiaozhou Bay have changed significantly in the past several decades, reflecting the increasing nutrient concentrations and decline of phytoplankton cell abundance. The unchanged total chlorophyll a levels indicated that smaller species have filled the niche vacated by the larger species in Jiaozhou Bay, as revealed by our biomarker pigment analysis. 相似文献
Biodegradation and oil mixing in Silurian sandstone reservoirs of the Tarim Basin, one of the largest composite basins in China, were investigated by analyzing the molecular characteristics and stable carbon isotopic signatures of low-molecular-weight (LMW) saturated hydrocarbons and high-molecular-weight (HMW) asphaltenes. Detection of 25-norhopanes and 17-nortricyclic terpanes in most Silurian tar sands from the Tabei Uplift in the Tarim Basin suggests a much greater degree of biodegradation here than in the Tazhong Uplift. This explains the relatively more abundant tricyclic terpanes, gammacerane, pregnane and diasteranes in tar sands from the Tabei Uplift than in those from the Tazhong Uplift. Hence, care must be taken when assigning oil source correlations using biomarkers in tar sands because of the biodegradation and mixing of oils derived from multiple sources in such an old composite basin. Asphaltenes in the tar sands seem to be part of the oil charge before biodegradation, depending on the relative anti-biodegradation characteristics of asphaltenes, the similarity in carbon isotopic signatures for asphaltenes and their pyrolysates, and the consistent product distribution for flash pyrolysis and for regular steranes in asphaltene pyrolysates, regardless of whether the tar sands were charged with fresh oil. According to the relative distributions of regular steranes and the relatively abundant 1,2,3,4-tetramethylbenzene significantly enriched in 13C, the oil sources for asphaltenes in the tar sands might be related to lower Paleozoic marine source rocks formed in euxinic conditions. Nevertheless, the relatively low abundance of gammacerane and C28 regular steranes observed in asphaltene pyrolysates and residual hydrocarbons, within limited samples investigated in this work, made a direct correlation of oils originally charged into Silurian tar sands with those Cambrian source rocks, reported so far, seem not to be possible. Comparison of carbon isotopic signatures of n-alkanes in asphaltene pyrolysates with those of LMW saturated hydrocarbons is helpful in determining if the abundant n-alkanes in tar sands are derived from fresh oil charges after biodegradation. The limited carbon isotopic data for n-alkanes in LMW saturated hydrocarbons from the tar sands can be used to classify oils charged after biodegradation in the composite basin into four distinct groups. 相似文献