The present study deals with the seismic site classification of Bahrah area, Wadi Fatima, to characterize the local site conditions. The dynamic behavior of sediments was studied by the application of surface wave inversion. The multichannel analysis of surface waves (MASW) shallow geophysical technique was utilized for site classification. MASW survey was carried out at 66 sites along with 13 seismic refraction profiles at suitable localities. MASW and seismic refraction profiles were processed and compared with the available borehole data. The integration of MASW techniques with seismic refraction and borehole data progressively enhanced the subsurface visualization and reliability of the shear wave velocity estimation in the subsurface in the study area. The subsurface shear-wave velocity model was achieved by the solution of an inverse problem-based dispersion of surface waves and propagation in a vertically heterogeneous medium. The 2D genetic algorithm was employed for the inversion of dispersion curves to obtain velocity and thickness of subsurface layers. The depth to engineering bedrock and velocity of shear waves in the first 30 m was deciphered and mapped. The depth of bedrock in study area varies from 4 to 30 m, and VS 30 ranges from 320 to 800 m/s. The most of study area falls in B and C class categories in addition to few sites of D class according to the NEHRP guidelines. 相似文献
In this work, uniaxial fatigue tests combined with post-test X-ray computed tomography (CT) scanning were conducted on marble samples with different interbed orientations, in order to reveal the anisotropic damage evolution characteristics during rock failure. The dynamic elastic modulus, damping ratio, fatigue deformation, damage evolution, accumulative damage modeling and crack pattern were systematically analyzed. The testing results indicate that the interbed structure in marble affects the damage evolution and the associated dynamic mechanical behaviors. The damage curve in “S” style indicates three-stage trend, namely, initial damage stage, steady damage stage and the accelerated damage stage. The damage index during cyclic deformation for marble presents obvious discrepancy. In addition, a fatigue damage prediction models was employed numerically as double-term power equations based on the experimental data. It is found that the selected damage model is suitable in modeling the rapid damage growth in the early and final stage of rock fatigue lifetime. Moreover, post-test CT scanning further reveals the anisotropic damage characteristics of marble, the crack pattern in the fractured sample is controlled by the interbed structure. What is more, the most striking founding is that the fracture degree is in consistent with the damage accumulation within the steady damage stage. Through a series of damage mechanical behavior analysis, the internal mechanism of the effect of interbed orientation on damage evolution of marble is firstly documented.
Application of the principles of transport theory to studiesof magma-hydrothermal systems permits quantitative predictionsto be made of the consequences of magma intruding into permeablerocks. Transport processes which redistribute energy, mass,and momentum in these environments can be represented by a setof partial differential equations involving the rate of changeof extensive properties in the system. Numerical approximationand computer evaluation of the transport equations effectivelysimulates the crystallization of magma, cooling of the igneousrocks, advection of chemical components, and chemical and isotopicmass transfer between minerals and aqueous solution. Numerical modeling of the deep portions of the Skaergaard magma-hydrothermalsystem has produced detailed maps of the temperature, pressure,fluid velocity, integrated fluid flux, 18O-values in rock andfluid, and extent of nonequilibrium exchange reactions betweenfluid and rock as a function of time for a two-dimensional cross-sectionthrough the pluton. An excellent match was made between calculated18O-values and the measured 18O-values in the three principalrock units, basalt, gabbro, and gneiss, as well as in xenolithsof roof rocks that are now embedded in Layered Series; the latterwere evidently depleted in 18O early in the system's coolinghistory, prior to falling to the bottom of the magma chamber.The best match was realized for a system in which the bulk rockpermeabilities were 1013 cm2 for the intrusion, 1011cm2 for basalt, and 1016 cm2 for gneiss; reaction domainsizes were 0.2 cm in the intrusion and gneiss and 0.01 cm inthe basalts, and activation energy for the isotope exchangereaction between fluid and plagioclase was 30 kcal/mole. The calculated thermal history of the Skaergaard system wascharacterized by extensive fluid circulation that was largelyrestricted to the permeable basalts and to regions of the plutonstratigraphically above the basalt-gneiss unconformity. Althoughfluids circulated all around the crystallizing magma, fluidflow paths were deflected around the magma sheet during theinitial 130,000 years. At that time, crystallization of thefinal sheet of magma and fracture of the rock shifted the circulationsystem toward the center of the intrusion, thereby minimizingthe extent of isotope exchange between rocks near the marginof the intrusion at this level. For comparison, similar calculationswere also made for pure conductive cooling; it was found thatthe rate of crystallization of the magma body was not changed.The solidified pluton cooled by a factor of about 2 faster inthe presence of a hydrothermal system. Transport rates of thermal energy out of the intrusion and oflow-18O fluids into the intrusion controlled the overall isotopeexchange process. During the initial 150,000 years, temperatureswere high and reaction rates were fast; thus, fluids flowinginto the intrusion quickly equilibrated with plagioclase. However,the temperature decreased between 120,000 and 175,000 yearsand caused a decrease in reaction rates and an increase in theequilibrium fractionation factor between plagioclase and fluid.Consequently, during this time period fluids in the intrusiontended to be out of equilibrium with plagioclase. After 175,000years temperatures had decreased sufficiently that reactionrates became insignificant, but convection rates were largeenough to redistribute fluid and enlarge the regions where fluidand plagioclase were out of equilibrium. By 400,000 years, thepluton had cooled to approximately ambient temperatures, andthe final 18O values were frozen in. Reactionsbetween hydrothermal fluid and the intrusion occurred over abroad range in temperature, 1000-200 °C, but 75 per centof the fluid circulated through the intrusion while its averagetemperature was >480 °C. This relatively high temperatureis consistent with the observation that only minor amounts ofhydrothermal alteration products were formed in the naturalsystem, even where several per mil shifts in 18O were detected. The relative quantities of fluid to rock integrated over theentire cooling history were 0.52 for the upper part of intrusion,0.88 for the basalt, 0.003 for the gneiss, and 0.41 for theentire domain. Almost all of the fluid flowed into the intrusionfrom the basalt host rocks that occur adjacent to the side contactsof the intrusion. Convection transferred about 20 per cent ofthe total heat contained in the gabbro upward into the overlyingbasalts; the remaining 80 per cent of the heat was transferredby conduction. 相似文献
A set of 44-year (1958–2001) homogeneous and high-resolution hindcasts of atmospheric, sea level residuals, and wave states was performed for the Mediterranean Basin within the framework of the HIPOCAS European Project. To this aim, different numerical models were used. As a first step, a Mediterranean high-resolution atmospheric database, suitable to provide realistic and homogeneous forcing for ocean hindcast runs was generated. The HIPOCAS atmospheric database was created by means of dynamical downscaling from the global reanalysis NCEP, using for that the limited area model SN-REMO along with a spectral nudging technique. In a second stage, different Mediterranean oceanic hindcasts were performed. On one hand a long-term database of sea state over the western Mediterranean was generated by means of the wave model WAM and on the other hand a sea level residual database containing storm surge events was obtained from a long-term integration of the HAMSOM model over the entire basin. The three different hindcast runs have been exhaustively validated. On that score, various simulated parameters have been compared to both satellite and in situ measurements. Such comparisons provide a measure of the skills of the different simulated fields to realistically reproduce the observed features. Once these skills are evaluated, a study of the ocean and atmospheric climate trends as well as the interannual variability for the whole 44-year period was carried out with the hindcasted data. The reliability of the data as shown by its comparison to measurements and a proven temporal homogeneity over the 44 years of simulation make the Mediterranean HIPOCAS ocean–atmosphere hindcasted database a useful tool for studies focused on regional climatic variability, as well as for further applications in coastal and environmental decision processes in the Mediterranean area. 相似文献
In order to assess current understanding of meteoric 10Be dynamics and distribution in terrestrial soils, we assembled a database of all published meteoric 10Be soil depth profiles, including 104 profiles from 27 studies in globally diverse locations, collectively containing 679 individual measurements. This allows for the systematic comparison of meteoric 10Be concentration to other soil characteristics and the comparison of profile depth distributions between geologic settings. Percent clay, 9Be, and dithionite-citrate extracted Al positively correlate to meteoric 10Be in more than half of the soils where they were measured, but the lack of significant correlation in other soils suggests that no one soil factor controls meteoric 10Be distribution with depth. Dithionite-citrate extracted Fe and cation exchange capacity are only weakly correlated to meteoric 10Be. Percent organic carbon and pH are not significantly related to meteoric 10Be concentration when all data are complied.The compilation shows that meteoric 10Be concentration is seldom uniform with depth in a soil profile. In young or rapidly eroding soils, maximum meteoric 10Be concentrations are typically found in the uppermost 20 cm. In older, more slowly eroding soils, the highest meteoric 10Be concentrations are found at depth, usually between 50 and 200 cm. We find that the highest measured meteoric 10Be concentration in a soil profile is an important metric, as both the value and the depth of the maximum meteoric 10Be concentration correlate with the total measured meteoric 10Be inventory of the soil profile.In order to refine the use of meteoric 10Be as an estimator of soil erosion rate, we compare near-surface meteoric 10Be concentrations to total meteoric 10Be soil inventories. These trends are used to calibrate models of meteoric 10Be loss by soil erosion. Erosion rates calculated using this method vary based on the assumed depth and timing of erosional events and on the reference data selected. 相似文献
Macquarie Harbour in southwest Tasmania, Australia, has been affected severely by the establishment of mines in nearby Queenstown in the 1890s. As well as heavy metal-laden acid rock drainage from the Mount Lyell mine area, over 100 Mt of mine tailings and slag were discharged into the Queen and Ring Rivers, with an estimated 10 Mt of mine tailings building a delta of ca. 2.5 km2 and ca. 10 Mt of fine tailings in the harbour beyond the delta. Coring of sediments throughout Macquarie Harbour indicated that mine tailings accreted most rapidly close to the King River delta source with a significant reduction in thickness of tailings and heavy metal contamination with increasing distance from the King River source. Close to the King River delta the mine tailings are readily discriminated from the background estuarine sediments on the basis of visual logging of the core (laminations, colour), sediment grain size, sediment magnetic susceptibility and elemental geochemistry, especially concentrations of the heavy metals Cu, Zn and Pb. The high heavy metal concentrations are demonstrated by the very high contamination factors (CF > 6) for Cu and Zn, with CF values mostly >50 for Cu for the mine-impacted sediments. Although the addition of mine waste into the King River catchment has ceased, the catchment continues to be a source of these heavy metals due to acid rock drainage and remobilisation of mine waste in storage in the river banks, river bed and delta. The addition of heavy metals to the harbour sourced from the Mount Lyell mines preceded the advent of direct tailings disposal into the Queen River in 1915 with the metals probably provided by acid rock drainage from the Mount Lyell mining area. 相似文献
Magma chambers cool and crystallize at a rate determined by the heat flux from the chamber. The heat is lost predominantly through the roof, whereas crystallization takes place mainly at the floor. Both processes provide destabilizing buoyancy fluxes which drive highly unsteady, chaotic convection in the magma. Even at the lowest cooling rates the thermal Rayleigh number Ra is found to be extremely large for both mafic and granitic magmas. Since the compositional and thermal buoyancy fluxes are directly related it can be shown that the compositional Rayleigh number Rs (and therefore a total Rayleigh number) is very much greater than Ra. In the case of basaltic melt crystallizing olivine Rs is up to 106 times greater than Ra. However compositional and thermal buoyancy fluxes are roughly equal. Therefore thermal and compositional density gradients contribute equally to convection velocities in the interior of the magma. Effects of thermal buoyancy generated by latent heat release at the floor are included.The latent heat boundary layer at the floor of a basaltic chamber is shown to be of the order of 1 m thick with very low thermal gradients whereas the compositional boundary layer is about 1 cm thick with large compositional gradients. As a consequence, the variation in the degree of supercooling in front of the crystal-liquid interface is dominated by compositional effects. The habit and composition of the growing crystals is also controlled by the nature of the compositional boundary layer. Elongate crystals are predicted to form when the thickness of the compositional boundary layer is small compared with the crystal size (as in laboratory experiments with aqueous solutions). In contrast, equant crystals form when the boundary layer is thicker than the crystals (as in most magma chambers). Instability of the boundary layer in the latter case gives rise to zoning within crystals. Diffusion of compatible trace elements through the boundary layer can also explain an inverse correlation, observed in layered intrusions, between Ni concentration in olivine and the proportion of Ni-bearing phases in the crystallizing assemblage. 相似文献
We report on experimental observations in PFP-I, a small 3.8 kJ plasma focus, which is operated in Hydrogen-Argon mixtures to investigate the effect of parameter modifications on the overall performance of the device. An extensive array of diagnostics is been used, which includes voltage and current probes in the external circuit, a novel small magnetic probes array located along the cathode rods, filtered PIN diodes located side and end on, and filtered multi-pinhole and slit-wire X-ray camera. Extended operating range from below 0.2 Torr upwards has been achieved. Hot spot formation has been investigated as a function of H2-Ar mixing ratio. Hot spot sizes around 150 m in the soft X-ray region, have been inferred from the slit-wire measurements. Pin-hole time integrated X-ray pictures and time resolved PIN diode measurements have been used to determine characteristic hot-spot temperatures in the 350 to 450 eV range. 相似文献
New solutions of the equations of the bimetric scalar-tensor theory of gravitation for neutron stars are found. In these solutions the scalar field is constant, φ = φφ, while the metric space-time tensor is determined by the equations of the general theory of relativity. The problem was to find a background metric corresponding to φφ. Solutions with a variable φ were studied earlier [M. R. Avakian, L. Sh. Grigorian, and A. A. Saharian, Astrofizika, 35, 121 (1991)] and are determined by the dimensionless parameter ζ of the theory. Differences between solutions with constant and variable ? are considerable for ¦ζ¦ ≤ 1. 相似文献