首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9521篇
  免费   349篇
  国内免费   430篇
测绘学   408篇
大气科学   739篇
地球物理   2041篇
地质学   3566篇
海洋学   791篇
天文学   2082篇
综合类   78篇
自然地理   595篇
  2023年   56篇
  2022年   94篇
  2021年   105篇
  2020年   112篇
  2019年   131篇
  2018年   320篇
  2017年   265篇
  2016年   363篇
  2015年   240篇
  2014年   339篇
  2013年   547篇
  2012年   321篇
  2011年   520篇
  2010年   379篇
  2009年   575篇
  2008年   464篇
  2007年   404篇
  2006年   415篇
  2005年   374篇
  2004年   349篇
  2003年   324篇
  2002年   324篇
  2001年   251篇
  2000年   234篇
  1999年   200篇
  1998年   194篇
  1997年   179篇
  1996年   182篇
  1995年   156篇
  1994年   132篇
  1993年   98篇
  1992年   100篇
  1991年   93篇
  1990年   86篇
  1989年   92篇
  1988年   70篇
  1987年   112篇
  1986年   73篇
  1985年   77篇
  1984年   83篇
  1983年   85篇
  1982年   87篇
  1981年   78篇
  1980年   67篇
  1979年   57篇
  1978年   34篇
  1977年   56篇
  1976年   54篇
  1975年   39篇
  1973年   43篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
51.
The IRAS and 2MASS associations for 193 T Tauri stars are identified in this paper. From the color–color diagrams and spectral index, it is found that the IR excesses for most samples are due to thermal emission from the circumstellar material, as suggested previously. It is also found that the IR excesses at IRAS region for few T Tauri stars and the near-IR excesses for some T Tauri stars are likely attributed to free-free emission or free-bound emission from the circumstellar ionized gas. Moreover, It is found in deredened J–H versus H–K color–color diagram that there is a slight separation in different spectral groups. The T Tauri stars locus equation in J–H versus H–K color–color diagram for our sample is also presented.  相似文献   
52.
53.
A one‐dimensional thermodynamic model for simulating lake‐ice phenology is presented and evaluated. The model can be driven with observed daily or hourly atmospheric forcing of air temperature, relative humidity, wind speed, cloud amount and snowfall. In addition to computing the energy balance components, key model output includes the temperature profile at an arbitrary number of levels within the ice/snow (or the water temperature if there is no ice) and ice thickness (clear ice and snow‐ice) on a daily basis, as well as freeze‐up and break‐up dates. The lake‐ice model is used to simulate ice‐growth processes on shallow lakes in arctic, sub‐arctic, and high‐boreal forest environments. Model output is compared with field and remote sensing observations gathered over several ice seasons. Simulated ice thickness, including snow‐ice formation, compares favourably with field measurements. Ice‐on and ice‐off dates are also well simulated when compared with field and satellite observations, with a mean absolute difference of 2 days. Model simulations and observations illustrate the key role that snow cover plays on the seasonal evolution of ice thickness and the timing of spring break‐up. It is also shown that lake morphometry, depth in particular, is a determinant of ice‐off dates for shallow lakes at high latitudes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
54.
The host galaxies of active galactic nuclei   总被引:2,自引:0,他引:2  
We examine the properties of the host galaxies of 22 623 narrow-line active galactic nuclei (AGN) with  0.02 < z < 0.3  selected from a complete sample of 122 808 galaxies from the Sloan Digital Sky Survey. We focus on the luminosity of the [O  iii ]λ5007 emission line as a tracer of the strength of activity in the nucleus. We study how AGN host properties compare with those of normal galaxies and how they depend on L [O  iii ]. We find that AGN of all luminosities reside almost exclusively in massive galaxies and have distributions of sizes, stellar surface mass densities and concentrations that are similar to those of ordinary early-type galaxies in our sample. The host galaxies of low-luminosity AGN have stellar populations similar to normal early types. The hosts of high-luminosity AGN have much younger mean stellar ages. The young stars are not preferentially located near the nucleus of the galaxy, but are spread out over scales of at least several kiloparsecs. A significant fraction of high-luminosity AGN have strong Hδ absorption-line equivalent widths, indicating that they experienced a burst of star formation in the recent past. We have also examined the stellar populations of the host galaxies of a sample of broad-line AGN. We conclude that there is no significant difference in stellar content between type 2 Seyfert hosts and quasars (QSOs) with the same [O  iii ] luminosity and redshift. This establishes that a young stellar population is a general property of AGN with high [O  iii ] luminosities.  相似文献   
55.
56.
57.
The influence of magnetic fields on the energy level populations of atoms is firstly studied by analysing the Stokes profiles of Fe  i 6302.5 forming in the solar magnetized atmosphere, with the aid of a departure factor defined to evaluate the deviation from the normal Boltzmann distribution without a magnetic field. This factor is directly related to the ratio of line-source function to the continuum one. The relationship between the departure and the magnetic field reveals an effect that the magnetic field induces an exponential increase in the level population of the lower level of Fe  i 6302.5 (Landé factor   g = 2.5  ) with the field strength. This indicates that the magnetic field can cause the redistribution of populations of those levels whose Landé factors are non-zero. Therefore, this effect should be included in the calculation of the statistical equilibrium. Secondly, an experiment utilizing the Hg5461 line in the laboratory on the Earth is carried out to reveal that the exponential relation is independent of variations in temperature, and the excitation is completely magneto-induced. Finally, the exponential relation is explained by taking account of the magnetic energy in the Boltzmann distribution.  相似文献   
58.
The hydrodynamic instability, which develops on the contact surface between two fluids, has great importance in astrophysical phenomena such as the inhomogeneous density distribution following a supernova event. In this event acceleration waves pass across a material interface and initiate and enhance unstable conditions in which small perturbations grow dramatically. In the present study, an experimental technique aimed at investigating the above-mentioned hydrodynamic instability is presented. The experimental investigation is based on a shock-tube apparatus by which a shock wave is generated and initiates the instability that develops on the contact surface between two gases. The flexibility of the system enables one to vary the initial shape of the contact surface, the shock-wave Mach number, and the density ratio across the contact surface. Three selected sets of shock-tube experiments are presented in order to demonstrate the system capabilities: (1) large-initial amplitudes with low-Mach-number incident shock waves; (2) small-initial amplitudes with moderate-Mach-number incident shock waves; and (3) shock bubble interaction. In the large-amplitude experiments a reduction of the initial velocity with respect to the linear growth prediction was measured. The results were compared to those predicted by a vorticity-deposition model and to previous experiments with moderate- and high-Mach number incident shock waves that were conducted by others. In this case, a reduction of the initial velocity was noted. However, at late times the growth rate had a 1/t behavior as in the small-amplitude low-Mach number case. In the small-amplitude moderate-Mach number shock experiments a reduction from the impulsive theory was noted at the late stages. The passage of a shock wave through a spherical bubble results in the formation of a vortex ring. Simple dimensional analysis shows that the circulation depends linearly on the speed of sound of the surrounding material and on the initial bubble radius.  相似文献   
59.
Using a set of compilations of measurements for extragalactic radio sources, we construct all-sky maps of the Faraday rotation produced by the Galactic magnetic field. In order to generate the maps, we treat the radio source positions as a kind of 'mask' and construct combinations of spherical harmonic modes that are orthogonal on the masked sky. As long as relatively small multipoles are used, the resulting maps are quite stable to changes in the selection criteria for the sources, and show clearly the structure of the local Galactic magnetic field. We also suggest the use of these maps as templates for cosmic microwave background (CMB) foreground analysis, illustrating the idea with a cross-correlation analysis between the Wilkinson Microwave Anisotropy Probe ( WMAP ) data and our maps. We find a significant cross-correlation, indicating the presence of a significant residual contamination.  相似文献   
60.
Abstract— Quantifying the peak temperatures achieved during metamorphism is critical for understanding the thermal histories of ordinary chondrite parent bodies. Various geothermometers have been used to estimate equilibration temperatures for chondrites of the highest metamorphic grade (type 6), but results are inconsistent and span hundreds of degrees. Because different geothermometers and calibration models were used with different meteorites, it is unclear whether variations in peak temperatures represent actual ranges of metamorphic conditions within type 6 chondrites or differences in model calibrations. We addressed this problem by performing twopyroxene geothermometry, using QUILF95, on the same type 6 chondrites for which peak temperatures were estimated using the plagioclase geothermometer (Nakamuta and Motomura 1999). We also calculated temperatures for published pyroxene analyses from other type 6 H, L, and LL chondrites to determine the most representative peak metamorphic temperatures for ordinary chondrites. Pyroxenes record a narrow, overlapping range of temperatures in H6 (865–926 °C), L6 (812–934 °C), and LL6 (874–945 °C) chondrites. Plagioclase temperature estimates are 96–179 °C lower than pyroxenes in the same type 6 meteorites. Plagioclase estimates may not reflect peak metamorphic temperatures because chondrule glass probably recrystallized to plagioclase prior to reaching the metamorphic peak. The average temperature for H, L, and LL chondrites (~900 °C), which agrees with previously published oxygen isotope geothermometry, is at least 50 °C lower than the peak temperatures used in current asteroid thermal evolution models. This difference may require minor adjustments to thermal model calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号