首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1487篇
  免费   55篇
  国内免费   9篇
测绘学   27篇
大气科学   114篇
地球物理   374篇
地质学   534篇
海洋学   126篇
天文学   233篇
综合类   12篇
自然地理   131篇
  2024年   3篇
  2023年   10篇
  2022年   8篇
  2021年   31篇
  2020年   28篇
  2019年   29篇
  2018年   48篇
  2017年   44篇
  2016年   52篇
  2015年   45篇
  2014年   62篇
  2013年   101篇
  2012年   58篇
  2011年   87篇
  2010年   72篇
  2009年   102篇
  2008年   79篇
  2007年   63篇
  2006年   62篇
  2005年   60篇
  2004年   53篇
  2003年   45篇
  2002年   58篇
  2001年   21篇
  2000年   19篇
  1999年   21篇
  1998年   21篇
  1997年   18篇
  1996年   27篇
  1995年   18篇
  1994年   14篇
  1993年   3篇
  1992年   20篇
  1991年   5篇
  1990年   9篇
  1989年   9篇
  1988年   11篇
  1987年   11篇
  1986年   7篇
  1985年   12篇
  1984年   14篇
  1983年   13篇
  1982年   15篇
  1981年   10篇
  1980年   13篇
  1979年   6篇
  1978年   6篇
  1977年   8篇
  1976年   7篇
  1975年   4篇
排序方式: 共有1551条查询结果,搜索用时 15 毫秒
971.
Abstract— The liquidus temperatures of chondrules range from about 1200 °C to almost 1900 °C, based on the calculation of Herzberg (1979). Dynamic melting and crystallization experiments with no external seeding suggest that some chondrule textures formed with initial temperatures below the liquidus (e.g., porphyritic, granular) and some were completely melted (e.g., excentroradial, glassy). Type I and III chondrules in carbonaceous chondrites in this interpretation consist of incompletely melted magnesian chondrules, completely melted silica-rich chondrules and intermediate composition chondrules with both porphyritic and nonporphyritic textures. A similar pattern for ordinary chondrites, with data also for Type II porphyritic and barred olivine chondrules, suggests that few chondrules with liquidus temperatures over 1750 °C were completely melted and few with under 1400 °C were incompletely melted. The range of liquidus temperatures for barred olivine chondrules, for which initial temperatures appear to have been essentially at the liquidus, is similar. Most chondrules may therefore have been heated to temperatures of 1400–1750 °C and, because of a peak in the distribution of barred olivine chondrule temperatures at 1500–1550 °C, the temperatures appear normally distributed within this range. Given a narrow range of temperatures, bulk composition is at least as important as initial temperature in controlling chondrule textures. Truly granular (not microporphyritic) Type I and truly glassy Type II and III chondrules appear under-represented in nature according to this model, based on internal nucleation experiments. External heterogeneous nucleation, or seeding due to droplet-dust collisions, is likely to occur in a dusty nebula and has been shown to reproduce chondrule textures experimentally. Generally high initial temperatures (1600–1800 °C), coupled with dust-seeding of superheated droplets of less refractory composition is an alternative explanation of chondrule textures. Cooling rates of 100–1000 °C/hr are required for chondrules, which must have been mass produced in clouds with sufficient particle density to buffer cooling rate and perhaps also initial temperature. Melting precursor particles in a thick clump and/or the nebular mid-plane would provide evaporation and thus explain the high oxidation state and volatile content of chondrules, relative to the bulk hydrogen-rich nebula, as well as the nature of the cooling.  相似文献   
972.
We provide a generalized discussion of tidal evolution to arbitrary order in the expansion of the gravitational potential between two spherical bodies of any mass ratio. To accurately reproduce the tidal evolution of a system at separations less than 5 times the radius of the larger primary component, the tidal potential due to the presence of a smaller secondary component is expanded in terms of Legendre polynomials to arbitrary order rather than truncated at leading order as is typically done in studies of well-separated system like the Earth and Moon. The equations of tidal evolution including tidal torques, the changes in spin rates of the components, and the change in semimajor axis (orbital separation) are then derived for binary asteroid systems with circular and equatorial mutual orbits. Accounting for higher-order terms in the tidal potential serves to speed up the tidal evolution of the system leading to underestimates in the time rates of change of the spin rates, semimajor axis, and mean motion in the mutual orbit if such corrections are ignored. Special attention is given to the effect of close orbits on the calculation of material properties of the components, in terms of the rigidity and tidal dissipation function, based on the tidal evolution of the system. It is found that accurate determinations of the physical parameters of the system, e.g., densities, sizes, and current separation, are typically more important than accounting for higher-order terms in the potential when calculating material properties. In the scope of the long-term tidal evolution of the semimajor axis and the component spin rates, correcting for close orbits is a small effect, but for an instantaneous rate of change in spin rate, semimajor axis, or mean motion, the close-orbit correction can be on the order of tens of percent. This work has possible implications for the determination of the Roche limit and for spin-state alteration during close flybys.  相似文献   
973.
Human alteration of land cover (e.g., urban and agricultural land use) and shoreline hardening (e.g., bulkheading and rip rap revetment) are intensifying due to increasing human populations and sea level rise. Fishes and crustaceans that are ecologically and economically valuable to coastal systems may be affected by these changes, but direct links between these stressors and faunal populations have been elusive at large spatial scales. We examined nearshore abundance patterns of 15 common taxa across gradients of urban and agricultural land cover as well as wetland and hardened shoreline in tributary subestuaries of the Chesapeake Bay and Delaware Coastal Bays. We used a comprehensive landscape-scale study design that included 587 sites in 39 subestuaries. Our analyses indicate shoreline hardening has predominantly negative effects on estuarine fauna in water directly adjacent to the hardened shoreline and at the larger system-scale as cumulative hardened shoreline increased in the subestuary. In contrast, abundances of 12 of 15 species increased with the proportion of shoreline comprised of wetlands. Abundances of several species were also significantly related to watershed cropland cover, submerged aquatic vegetation, and total nitrogen, suggesting land-use-mediated effects on prey and refuge habitat. Specifically, abundances of four bottom-oriented species were negatively related to cropland cover, which is correlated with elevated nitrogen and reduced submerged and wetland vegetation in the receiving subestuary. These empirical relationships raise important considerations for conservation and management strategies in coastal environments.  相似文献   
974.
Bark samples isolated from brown coal deposits in Victoria, Australia, and buried wood from Rhizophora mangle have been studies by high-resolution solid-state nuclear magnetic resonance (NMR) techniques. Dipolar dephasing 13C NMR appears to be a useful method of detecting the presence of tannins in geochemical samples including barks, buried woods, peats and leaf litter. It is shown that tannins are selectively preserved in bark during coalification to the brown coal stage.  相似文献   
975.
976.
Maltese symbolic and lived identities are examined to explore the changes that occur in cultural identity between generations and place of residence within metropolitan Sydney. The results are employed to problematise Sandberg's straight-line theory, that is, that ethnic identity will decline with each successive generation. Our results, exploring ethnic identity in both its symbolic and lived-experience forms, confirm arguments that global cities are not homogeneous territories, as implied by Sandberg, but rather sites of cultural difference. The results suggest that, regardless of place of residence or generation, the symbolic Maltese identities remain similar, combating the old, naive assimilationist assumption that all immigrants would quickly abandon their ethnic identity, and favouring arguments supporting hybrid identities. Similarly, results for Maltese identity as lived experience suggest that their Maltese identity is less important only for those second-generation Maltese living in census collection districts with less than 10 per cent of the population born in Malta.  相似文献   
977.
Abstract— In this paper, we present numerical simulations aimed at reproducing the Baptistina family based on its properties estimated by observations. A previous study by Bottke et al. (2007) indicated that this family is probably at the origin of the K/T impactor, is linked to the CM meteorites and was produced by the disruption of a parent body 170 km in size due to the head‐on impact of a projectile 60 km in size at 3 km s?1. This estimate was based on simulations of fragmentation of non‐porous materials, while the family was assumed to be of C taxonomic type, which is generally interpreted as being formed from a porous body. Using both a model of fragmentation of non‐porous materials, and a model that we developed recently for porous ones, we performed numerical simulations of disruptions aimed at reproducing this family and at analyzing the differences in the outcome between those two models. Our results show that a reasonable match to the estimated size distribution of the real family is produced from the disruption of a porous parent body by the head‐on impact of a projectile 54 km in size at 3 km s?1. Thus, our simulations with a model consistent with the assumed dark type of the family requires a smaller projectile than previously estimated, but the difference remains small enough to not affect the proposed scenario of this family history. We then find that the break‐up of a porous body leads to different outcomes than the disruption of a non‐porous one. The real properties of the Baptistina family still contain large uncertainties, and it remains possible that its formation did not involve the proposed impact conditions. However, the simulations presented here already show some range of outcomes and once the real properties are better constrained, it will be easy to check whether one of them provides a good match.  相似文献   
978.
The zodiacal light is the dominant source of the mid-infrared sky brightness seen from Earth, and exozodiacal light is the dominant emission from planetary and debris systems around other stars. We observed the zodiacal light spectrum with the mid-infrared camera ISOCAM over the wavelength range 5-16 μm and a wide range of orientations relative to the Sun (solar elongations 68°-113°) and the ecliptic (plane to pole). The temperature in the ecliptic ranged from 269 K at solar elongation 68° to 244 K at 113°, and the polar temperature, characteristic of dust 1 AU from the Sun, is 274 K. The observed temperature is exactly as expected for large (>10 μm radius), low-albedo (<0.08), rapidly-rotating, gray particles 1 AU from the Sun. Smaller particles (<10 μm radius) radiate inefficiently in the infrared and are warmer than observed. We present theoretical models for a wide range of particle size distributions and compositions; it is evident that the zodiacal light is produced by particles in the 10-100 μm radius range. In addition to the continuum, we detect a weak excess in the 9-11 μm range, with an amplitude of 6% of the continuum. The shape of the feature can be matched by a mixture of silicates: amorphous forsterite/olivine provides most of the continuum and some of the 9-11 μm silicate feature, dirty crystalline olivine provides the red wing of the silicate feature (and a bump at 11.35 μm), and a hydrous silicate (montmorillonite) provides the blue wing of the silicate feature. The presence of hydrous silicate suggests the parent bodies of those particles were formed in the inner solar nebula. Large particles dominate the size distribution, but at least some small particles (radii ∼1 μm) are required to produce the silicate emission feature. The strength of the feature may vary spatially, with the strongest features being at the lowest solar elongations as well as at high ecliptic latitudes; if confirmed, this would imply that the dust properties change such that dust further from the Sun has a weaker silicate feature. To compare the properties of zodiacal dust to dust around other main sequence stars, we reanalyzed the exozodiacal light spectrum for β Pic to derive the shape of its silicate feature. The zodiacal and exozodiacal spectra are very different. The exozodiacal spectra are dominated by cold dust, with emission peaking in the far-infrared, while the zodiacal spectrum peaks around 20 μm. We removed the debris disk continuum from the spectra by fitting a blackbody with a different temperature for each aperture (ranging from 3.7″ to 27″); the resulting silicate spectra for β Pic are identical for all apertures, indicating that the silicate feature arises close to the star. The shape of the silicate feature from β Pic is nearly identical to that derived from the ISO spectrum of 51 Oph; both exozodiacal features are very different from that of the zodiacal light. The exozodiacal features are roughly triangular, peaking at 10.3 μm, while the zodiacal feature is more boxy, indicating a different mineralogy.  相似文献   
979.
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号