全文获取类型
收费全文 | 102篇 |
免费 | 5篇 |
国内免费 | 1篇 |
专业分类
大气科学 | 4篇 |
地球物理 | 36篇 |
地质学 | 34篇 |
海洋学 | 14篇 |
天文学 | 7篇 |
自然地理 | 13篇 |
出版年
2023年 | 1篇 |
2021年 | 1篇 |
2020年 | 4篇 |
2019年 | 2篇 |
2018年 | 3篇 |
2017年 | 5篇 |
2016年 | 8篇 |
2015年 | 4篇 |
2014年 | 6篇 |
2013年 | 3篇 |
2012年 | 5篇 |
2011年 | 4篇 |
2010年 | 3篇 |
2009年 | 6篇 |
2008年 | 3篇 |
2007年 | 9篇 |
2006年 | 2篇 |
2005年 | 9篇 |
2004年 | 2篇 |
2002年 | 5篇 |
2001年 | 3篇 |
2000年 | 1篇 |
1999年 | 5篇 |
1997年 | 4篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1990年 | 3篇 |
1988年 | 1篇 |
1986年 | 1篇 |
排序方式: 共有108条查询结果,搜索用时 31 毫秒
41.
42.
Speciation and natural attenuation of arsenic and iron in a tidally influenced shallow aquifer 总被引:2,自引:0,他引:2
Robert A. Root Dimitri Vlassopoulos Nelson A. Rivera Michael T. Rafferty Charles Andrews Peggy A. ODay 《Geochimica et cosmochimica acta》2009,73(19):5528-5553
The mobility of subsurface arsenic is controlled by sorption, precipitation, and dissolution processes that are tied directly to coupled redox reactions with more abundant, but spatially and temporally variable, iron and sulfur species. Adjacent to the site of a former pesticide manufacturing facility near San Francisco Bay (California, USA), soil and groundwater arsenic concentrations are elevated in sediments near the prior source, but decrease to background levels downgradient where shallow groundwater mixes with infiltrating tidal waters at the plume periphery, which has not migrated appreciably in over two decades of monitoring. We used synchrotron X-ray absorption spectroscopy, together with supporting characterizations and sequential chemical extractions, to directly determine the oxidation state of arsenic and iron as a function of depth in sediments from cores recovered from the unsaturated and saturated zones of a shallow aquifer (to 3.5 m below the surface). Arsenic oxidation state and local bonding in sediments, as As-sulfide, As(III)-oxide, or As(V)-oxide, were related to lithologic redox horizons and depth to groundwater. Based on arsenic and iron speciation, three subsurface zones were identified: (i) a shallow reduced zone in which sulfide phases were found in either the arsenic spectra (realgar-like or orpiment-like local structure), the iron spectra (presence of pyrite), or both, with and without As(III) or As(V) coordinated by oxygen; (ii) a middle transitional zone with mixed arsenic oxidation states (As(III)–O and As(V)–O) but no evidence for sulfide phases in either the arsenic or iron spectra; and (iii) a lower oxidized zone in the saturated freshwater aquifer in which sediments contained only oxidized As(V) and Fe(III) in labile (non-detrital) phases. The zone of transition between the presence and absence of sulfide phases corresponded to the approximate seasonal fluctuation in water level associated with shallow groundwater in the sand-dominated, lower oxic zone. Total sediment arsenic concentrations showed a minimum in the transition zone and an increase in the oxic zone, particularly in core samples nearest the former source. Equilibrium and reaction progress modeling of aqueous-sediment reactions in response to decreasing oxidation potential were used to illustrate the dynamics of arsenic uptake and release in the shallow subsurface. Arsenic attenuation was controlled by two mechanisms, precipitation as sulfide phases under sulfate-reducing conditions in the unsaturated zone, and adsorption of oxidized arsenic to iron hydroxide phases under oxidizing conditions in saturated groundwaters. This study demonstrates that both realgar-type and orpiment-type phases can form in sulfate-reducing sediments at ambient temperatures, with realgar predicted as the thermodynamically stable phase in the presence of pyrite and As(III) under more reduced conditions than orpiment. Field and modeling results indicate that the potential for release of arsenite to solution is maximized in the transition between sulfate-reduced and iron-oxidized conditions when concentrations of labile iron are low relative to arsenic, pH-controlled arsenic sorption is the primary attenuation mechanism, and mixed Fe(II,III)-oxide phases do not form and generate new sorption sites. 相似文献
43.
Jean-Claude Thouret Marco Rivera Gerhard Wörner Marie-Christine Gerbe Anthony Finizola Michel Fornari Katherine Gonzales 《Bulletin of Volcanology》2005,67(6):557-589
Ubinas volcano has had 23 degassing and ashfall episodes since A.D. 1550, making it the historically most active volcano in southern Peru. Based on fieldwork, on interpretation of aerial photographs and satellite images, and on radiometric ages, the eruptive history of Ubinas is divided into two major periods. Ubinas I (Middle Pleistocene >376 ka) is characterized by lava flow activity that formed the lower part of the edifice. This edifice collapsed and resulted in a debris-avalanche deposit distributed as far as 12 km downstream the Rio Ubinas. Non-welded ignimbrites were erupted subsequently and ponded to a thickness of 150 m as far as 7 km south of the summit. These eruptions probably left a small collapse caldera on the summit of Ubinas I. A 100-m-thick sequence of ash-and-pumice flow deposits followed, filling paleo-valleys 6 km from the summit. Ubinas II, 376 ky to present comprises several stages. The summit cone was built by andesite and dacite flows between 376 and 142 ky. A series of domes grew on the southern flank and the largest one was dated at 250 ky; block-and-ash flow deposits from these domes filled the upper Rio Ubinas valley 10 km to the south. The summit caldera was formed between 25 and 9.7 ky. Ash-flow deposits and two Plinian deposits reflect explosive eruptions of more differentiated magmas. A debris-avalanche deposit (about 1.2 km3) formed hummocks at the base of the 1,000-m-high, fractured and unstable south flank before 3.6 ka. Countless explosive events took place inside the summit caldera during the last 9.7 ky. The last Plinian eruption, dated A.D.1000–1160, produced an andesitic pumice-fall deposit, which achieved a thickness of 25 cm 40 km SE of the summit. Minor eruptions since then show phreatomagmatic characteristics and a wide range in composition (mafic to rhyolitic): the events reported since A.D. 1550 include many degassing episodes, four moderate (VEI 2–3) eruptions, and one VEI 3 eruption in A.D. 1667. Ubinas erupted high-K, calc-alkaline magmas (SiO2=56 to 71%). Magmatic processes include fractional crystallization and mixing of deeply derived mafic andesites in a shallow magma chamber. Parent magmas have been relatively homogeneous through time but reflect variable conditions of deep-crustal assimilation, as shown in the large variations in Sr/Y and LREE/HREE. Depleted HREE and Y values in some lavas, mostly late mafic rocks, suggest contamination of magmas near the base of the >60-km-thick continental crust. The most recently erupted products (mostly scoria) show a wide range in composition and a trend towards more mafic magmas.Recent eruptions indicate that Ubinas poses a severe threat to at least 5,000 people living in the valley of the Rio Ubinas, and within a 15-km radius of the summit. The threat includes thick tephra falls, phreatomagmatic ejecta, failure of the unstable south flank with subsequent debris avalanches, rain-triggered lahars, and pyroclastic flows. Should Plinian eruptions of the size of the Holocene events recur at Ubinas, tephra fall would affect about one million people living in the Arequipa area 60 km west of the summit.Editorial responsibility: D Dingwell 相似文献
44.
C. E. V. Carvalho A. R. C. Ovalle C. E. Rezende M. M. Molisani M. S. M. B. Salomão L. D. Lacerda 《Environmental Geology》1999,37(4):297-302
Temporal and spatial variability of particulate metal concentrations (Cu, Cr, Zn, Mn and Fe) were investigated in the lower
drainage basin of the Paraíba do Sul River. The results showed that the spatial variability was not important for all the
studied metals, however, temporal variations seems to be considerable. In general, two distinct behaviors were observed for
particulate heavy metals: (1) metal concentration increase together with water flow (Fe and Cu) and (2) concentration decrease
with increasing water flux (Zn, Cr and Mn). The Fe and Cu behavior is probably due to the strong association of these metals
with surface runoff, although their sources seem to be distinct. Iron probably originates from the regional soils rich in
iron oxides, and Cu is possibly associated to the large-scale use of copper fungicides in the sugar cane plantations. The
opposite trend observed for Zn, Cr and Mn probably reflects the importance of the industrial and urban effluents as a secondary
source of these elements for the system. Their behavior is probably associated with the dilution effect caused by the input
of a suspended matter poor in these metals originated from the surface runoff during the rainy season.
Received: 4 March 1998 · Accepted: 30 June 1998 相似文献
45.
46.
47.
Fernando Barra Hugo Alcota Sergio Rivera Victor Valencia Francisco Munizaga Victor Maksaev 《Mineralium Deposita》2013,48(5):629-651
The recently discovered Toki cluster, which includes the Toki, Quetena, Genoveva, Miranda, and Opache porphyry Cu–Mo prospects, is located 15 km south–southwest of the Chuquicamata–Radomiro Tomic mines in northern Chile. These prospects occur in an area of 5?×?6 km and are completely covered with Neogene alluvial deposits. Inferred resources for the cluster are estimated at about 20 Mt of fine copper, with Toki and Quetena contributing ~88 % of these resources. Mineralization in these deposits is associated with tonalite porphyries that intruded andesites and dacites of the Collahuasi Group and intrusions of the Fortuna–Los Picos Granodioritic Complex. Hypogene mineralization in the Toki cluster consists mainly of chalcopyrite–bornite with minor molybdenite with mineralization grading outward to a chalcopyrite–pyrite zone and ultimately to a pyrite halo. Alteration is dominantly of the potassic type with K-feldspar and hydrothermal biotite. Sericitic alteration is relatively restricted to late quartz–pyrite veins (D-type veins). Previous K–Ar geochronology for the cluster yielded ages within a range of 34 to 40 Ma. Four new Re–Os ages for Toki indicate that molybdenite mineralization occurred in a single pulse at ~38 Ma. Re–Os ages for three different molybdenite samples from Quetena are within error of the Toki mineralization ages. These ages are concordant with a new zircon U–Pb age of 38.6?±?0.7 Ma from the tonalite porphyry in Quetena. Two Re–Os ages for Genoveva (38.1?±?0.2 and 38.0?±?0.2 Ma) are also within error of the Toki and Quetena molybdenite ages. Four Re–Os molybdenite ages for Opache range between 36.4 and 37.6 Ma. The Miranda prospect is the youngest with an age of ~36 Ma. Four new Re–Os ages for the Chuquicamata deposit range between 33 and 32 Ma, whereas nine new 40Ar/39Ar ages of biotite, muscovite, and K-feldspar range between 32 and 31 Ma. Analyzed molybdenites have Re and Os concentrations that vary between 21–3,099 ppm and 8–1,231 ppb, respectively. The highest Re and Os concentrations are found in the Toki prospect. Three new 40Ar/39Ar ages for the Toki cluster are younger than the Re–Os mineralization ages. The age spectra for these three samples show evidence of excess argon and have similar inverse isochron ages of 35 Ma that probably reflect a late hydrothermal phyllic event. The new geochronological data presented here for the Toki cluster indicate that molybdenite mineralization occurred within a very short period, probably within 2 Ma, and synchronously (at ~38 Ma) in three mineralization centers (Toki, Quetena, and Genoveva). Furthermore, mineralization at the Toki cluster preceded the emplacement of the Chuquicamata deposit (35–31 Ma) and indicates that porphyry Cu–Mo mineralization occurred episodically over a period of several million years in the Chuquicamata district. 相似文献
48.
Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations 下载免费PDF全文
Pascal Castellazzi Richard Martel Devin L. Galloway Laurent Longuevergne Alfonso Rivera 《Ground water》2016,54(6):768-780
In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid‐pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR‐derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems. 相似文献
49.
Atmospheric temperatures measured at the Chilean Lake District (38°–42°S) showed contrasting trends during the second half of the 20th century. The surface cooling detected at several meteorological stations ranged from − 0.014 to − 0.021 °C a− 1, whilst upper troposphere (850–300 gpm) records at radiosonde of Puerto Montt (41°26′S/73°07′W) revealed warming between 0.019 and 0.031 °C a− 1. Regional rainfall data collected from 1961 to 2000 showed the overall decrease with a maximum rate of − 15 mm a− 2 at Valdivia st. (39°38′S/73°05′W). These ongoing climatic changes, especially the precipitation reduction, seem to be related to El Niño–Southern Oscillation (ENSO) phenomena which has been more frequent after 1976. Glaciers within the Chilean Lake District have significantly retreated during recent decades, in an apparent out-of-phase response to the regional surface cooling. Moreover, very little is known about upper troposphere changes and how they can enhance the glacier responses. In order to analyse their behaviour in the context of the observed climate changes, Casa Pangue glacier (41°08′S/71°52′W) has been selected and studied by comparing Digital Elevation Models (DEMs) computed at three different dates throughout the last four decades. This approach allowed the determination of ice elevation changes between 1961 and 1998, yielding a mean thinning rate of − 2.3 ± 0.6 m a− 1. Strikingly, when ice thinning is computed for the period between 1981 and 1998, the resulting rate is 50% higher (− 3.6 ± 0.6 m a− 1). This enhanced trend and the related area loss and frontal retreat suggests that Casa Pangue might currently be suffering negative mass balances in response to the upper troposphere warming and decreased precipitation of the last 25–30 yr, as well as debris cover would not prevent the glacier from a fast reaction to climate forcing. Most of recent glaciological studies regarding Andean glaciers have concentrated on low altitude changes, namely frontal variations, however, in order to better understand the regional glacier changes, new data are necessary, especially from the accumulation areas. 相似文献
50.
Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile 总被引:1,自引:3,他引:1
Andrs Rivera Toby Benham Gino Casassa Jonathan Bamber Julian A. Dowdeswell 《Global and Planetary Change》2007,59(1-4):126
High thinning rates (up to − 4.0 ± 0.97 m a− 1) have been measured at Campo de Hielo Patagónico Norte (CHN) or Northern Patagonia Icefield, Chile between 1975 and 2001. Results have been obtained by comparing a Digital Elevation Model (DEM) derived from regular cartography compiled by Instituto Geográfico Militar of Chile (IGM) based upon 1974/1975 aerial photographs and a DEM generated from Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) satellite images acquired in September 2001. A complete cloud-free Landsat ETM+ satellite image mosaic acquired in March 2001 was used to update the available glacier inventory of the CHN, including all glaciers larger than 0.5 km2 (48 new glaciers). A new delineation of ice divides was also performed over the accumulation areas of glaciers sharing the high plateau where the existing regular cartography exhibits poor coverage of topographic information. This updated glacier inventory produced a total ice area for 2001 of 3953 km2, which represents a decrease of 3.4 ± 1.5% (140 ± 61 km2 of ice) with respect to the total ice area of the CHN in 1979 calculated from a Landsat MSS satellite image. Almost 62% of the total area change between 1979 and 2001 took place in glaciers located at the western margin of the CHN, where the maximum area loss was experienced by Glaciar San Quintín with 33 km2. At the southern margin, Glaciar Steffen underwent the largest ice-area loss (12 km2 or 2.6% of the 1979 area), whilst at the eastern margin the greatest area loss took place in Glaciares Nef (7.9 km2, 5.7% of the 1979 area) and Colonia (9.1 km2, 2.7% of the 1979 area). At the northern margin of the CHN the lower debris-covered ablation area of Glaciar Grosse collapsed into a new freshwater lake formed during the late 1990s. The areal changes measured at the CHN are much larger than previously estimated due to the inclusion of changes experienced in the accumulation areas. The CHN as a whole is contributing melt water to global sea level rise at rates 25% higher than previous estimates. 相似文献