首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   10篇
  国内免费   3篇
测绘学   7篇
大气科学   18篇
地球物理   95篇
地质学   133篇
海洋学   11篇
天文学   47篇
自然地理   40篇
  2023年   2篇
  2022年   2篇
  2021年   7篇
  2020年   9篇
  2019年   7篇
  2018年   11篇
  2017年   7篇
  2016年   14篇
  2015年   10篇
  2014年   22篇
  2013年   16篇
  2012年   19篇
  2011年   20篇
  2010年   23篇
  2009年   28篇
  2008年   15篇
  2007年   13篇
  2006年   10篇
  2005年   10篇
  2004年   8篇
  2003年   10篇
  2002年   7篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1992年   5篇
  1991年   4篇
  1990年   9篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1964年   1篇
  1959年   1篇
排序方式: 共有351条查询结果,搜索用时 15 毫秒
21.
22.
23.
During the past 4 Mars years, Mars Orbiter Camera imaging capabilities have been used to document occurrence of seasonal patches of frost at latitudes as low as 33° S, and even 24° S. Monitoring reveals bright patches on pole-facing slopes; these appear in early southern winter and disappear in mid winter. The frost forms annually. Thermal Emission Spectrometer and daytime Thermal Emission Imaging System observations show surface temperatures on and near pole facing slopes reach the condensation temperature of CO2, indicating the patches consist of carbon dioxide rather than water frost. For several months, temperatures on pole-facing crater walls are so low that even carbon dioxide condenses on them, although the slopes are illuminated by the Sun every day. Thermal model calculations show slopes accumulate a several centimeter thick layer of CO2 frost. The frost becomes visible only months after it has begun to form, and has an orientational preference which is due to illumination bias at the time of observation. H2O condenses at higher temperatures and water frost must therefore also be present. Potential opportunities to observe seasonal water frost at low latitudes are also described.  相似文献   
24.
25.
Extreme climate events have been identified both in meteorological and long-term proxy records from the Indian summer monsoon (ISM) realm. However, the potential of palaeoclimate data for understanding mechanisms triggering climate extremes over long time scales has not been fully exploited. A distinction between proxies indicating climate change, environment, and ecosystem shift is crucial for enabling a comparison with forcing mechanisms (e.g. El-Niño Southern Oscillation). In this study we decouple these factors using data analysis techniques [multiplex recurrence network (MRN) and principal component analyses (PCA)] on multiproxy data from two lakes located in different climate regions – Lonar Lake (ISM dominated) and the high-altitude Tso Moriri Lake (ISM and westerlies influenced). Our results indicate that (i) MRN analysis, an indicator of changing environmental conditions, is associated with droughts in regions with a single climate driver but provides ambiguous results in regions with multiple climate/environmental drivers; (ii) the lacustrine ecosystem was ‘less sensitive’ to forcings during the early Holocene wetter periods; (iii) archives in climate zones with a single climate driver were most sensitive to regime shifts; (iv) data analyses are successful in identifying the timing of onset of climate change, and distinguishing between extrinsic and intrinsic (lacustrine) regime shifts by comparison with forcing mechanisms. Our results enable development of conceptual models to explain links between forcings and regional climate change that can be tested in climate models to provide an improved understanding of the ISM dynamics and their impact on ecosystems. © 2020 John Wiley & Sons, Ltd.  相似文献   
26.
27.
A new high-resolution magnetostratigraphic record from the eastern Arctic Ocean has yielded further evidence for the existence of the Laschamp excursion (37–35  ka), the Mono Lake excursion (27–25.5  ka) and possibly another very short excursion (22  ka) inferred from steep negative inclinations. Ages are based on nine AMS (accelerator mass spectrometry) 14C dates, oxygen isotope stratigraphy and correlation with ODP site 983. Estimates of relative palaeointensity variations for the time interval from 80 to 10  ka have revealed that the documented geomagnetic excursions are linked to large fluctuations of the relative palaeointensity. The lowest values were obtained for the two excursions and the normal–reversed (N–R) and reversed–normal (R–N) transitions of the Laschamp polarity excursion, which itself is characterized by a slight increase of relative palaeointensity during its reversed state. The results are in general agreement with palaeointensity studies from other regions, indicating that these fluctuations could be global phenomena and that the geomagnetic field of the Brunhes Chron was very variable in amplitude as well as in geometry. The new result is one of the rare records comprising large directional as well as large relative palaeointensity variations.  相似文献   
28.
Groundwaters from the Tithonian/Kimmeridgian, Oxfordian and Upper Dogger aquifers, within the eastern part of the Paris basin (France), were characterised using 3H, 14C and 36Cl, and noble gases tracers, to evaluate their residence times and determine their recharge period. This information is an important prerequisite to evaluating the confinement properties of the Callovo-Oxfordian clay formation sandwiched between the Oxfordian aquifer and the Dogger aquifer, currently being investigated by the French nuclear waste management agency (Andra) for radioactive waste disposal. Data presented in this paper are used to test 4 hypotheses.  相似文献   
29.
Internal variability of the Asian monsoon system and the relationship amongst its sub-systems, the Indian and East Asian Summer Monsoon, are not sufficiently understood to predict its responses to a future warming climate. Past environmental variability is recorded in Palaeoclimate proxy data. In the Asian monsoon domain many records are available, e.g. from stalagmites, tree-rings or sediment cores. They have to be interpreted in the context of each other, but visual comparison is insufficient. Heterogeneous growth rates lead to uneven temporal sampling. Therefore, computing correlation values is difficult because standard methods require co-eval observation times, and sampling-dependent bias effects may occur. Climate networks are tools to extract system dynamics from observed time series, and to investigate Earth system dynamics in a spatio-temporal context. We establish paleoclimate networks to compare paleoclimate records within a spatially extended domain. Our approach is based on adapted linear and nonlinear association measures that are more efficient than interpolation-based measures in the presence of inter-sampling time variability. Based on this new method we investigate Asian Summer Monsoon dynamics for the late Holocene, focusing on the Medieval Warm Period (MWP), the Little Ice Age (LIA), and the recent period of warming in East Asia. We find a strong Indian Summer Monsoon (ISM) influence on the East Asian Summer Monsoon during the MWP. During the cold LIA, the ISM circulation was weaker and did not extend as far east. The most recent period of warming yields network results that could indicate a currently ongoing transition phase towards a stronger ISM penetration into China. We find that we could not have come to these conclusions using visual comparison of the data and conclude that paleoclimate networks have great potential to study the variability of climate subsystems in space and time.  相似文献   
30.
Changes in the stress field of an aquifer system induced by seismotectonic activity may change the mixing ratio of groundwaters with different compositions in a well, leading to hydrochemical signals which in principle could be related to discrete earthquake events. Due to the complexity of the interactions and the multitude of involved factors the identification of such relationships is a difficult task. In this study we present an empiric statistical approach suitable to analyse if there is an interdependency between changes in the chemical composition of monitoring wells and the regional seismotectonic activity of a considered area. To allow a rigorous comparison with hydrochemistry the regional earthquake time series was aggregated into an univariate time series. This was realized by expressing each earthquake in form of a parameter “e”, taking into consideration both energetic (magnitude of a seismic event) and spatial parameters (position of epi/hypocentrum relative to the monitoring site). The earthquake and the hydrochemical time-series were synchronised aggregating the e-parameters into “earthquake activity” functions E, which takes into account the time of sampling relative to the earthquakes which occurred in the considered area. For the definition of the aggregation functions a variety of different “e” parameters were considered. The set of earthquake functions E was grouped by means of factor analysis to select a limited number of significant and representative earthquake functions E to be used further on in the relation analysis with the multivariate hydrochemical data set. From the hydrochemical data a restricted number of hydrochemical factors were extracted. Factor scores allow to represent and analyse the variation of the hydrochemical factors as a function of time. Finally, regression analysis was used to detect those hydrochemical factors which significantly correlate with the aggregated earthquake functions.This methodological approach was tested with a hydrochemical data set collected from a deep well monitored for two years in the seismically active Vrancea region, Romania. Three of the hydrochemical factors were found to correlate significantly with the considered earthquake activities. A screening with different time combinations revealed that correlations are strongest when the cumulative seismicity over several weeks was considered. The case study also showed that the character of the interdependency depends sometimes on the geometrical distribution of the earthquake foci. By using aggregated earthquake information it was possible to detect interrelationships which couldn't have been identified by analysing only relations between single geochemical signals and single earthquake events. Further on, the approach allows to determine the influence of different seismotectonic patterns on the hydrochemical composition of the sampled well. The method is suitable to be used as a decision instrument in assessing if a monitoring site is suitable or not to be included in a monitoring net within a complex earthquake prediction strategy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号