全文获取类型
收费全文 | 53836篇 |
免费 | 616篇 |
国内免费 | 1149篇 |
专业分类
测绘学 | 2117篇 |
大气科学 | 4202篇 |
地球物理 | 10318篇 |
地质学 | 22197篇 |
海洋学 | 3612篇 |
天文学 | 7927篇 |
综合类 | 2214篇 |
自然地理 | 3014篇 |
出版年
2021年 | 294篇 |
2020年 | 315篇 |
2019年 | 323篇 |
2018年 | 5377篇 |
2017年 | 4655篇 |
2016年 | 3373篇 |
2015年 | 718篇 |
2014年 | 914篇 |
2013年 | 1649篇 |
2012年 | 1900篇 |
2011年 | 3854篇 |
2010年 | 3027篇 |
2009年 | 3611篇 |
2008年 | 3027篇 |
2007年 | 3494篇 |
2006年 | 1235篇 |
2005年 | 1054篇 |
2004年 | 1247篇 |
2003年 | 1173篇 |
2002年 | 1021篇 |
2001年 | 774篇 |
2000年 | 764篇 |
1999年 | 576篇 |
1998年 | 549篇 |
1997年 | 608篇 |
1996年 | 474篇 |
1995年 | 482篇 |
1994年 | 478篇 |
1993年 | 386篇 |
1992年 | 390篇 |
1991年 | 368篇 |
1990年 | 378篇 |
1989年 | 350篇 |
1988年 | 346篇 |
1987年 | 370篇 |
1986年 | 329篇 |
1985年 | 432篇 |
1984年 | 422篇 |
1983年 | 451篇 |
1982年 | 418篇 |
1981年 | 387篇 |
1980年 | 425篇 |
1979年 | 325篇 |
1978年 | 304篇 |
1977年 | 298篇 |
1976年 | 273篇 |
1975年 | 264篇 |
1974年 | 269篇 |
1973年 | 256篇 |
1971年 | 173篇 |
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
151.
Kousik Biswas Debashish Chakravarty Pabitra Mitra Arundhati Misra 《Journal of the Indian Society of Remote Sensing》2017,45(6):913-926
Interferometric Synthetic Aperture Radar (InSAR), nowadays, is a precise technique for monitoring and detecting ground deformation at a millimetric level over large areas using multi-temporal SAR images. Persistent Scatterer Interferometric SAR (PSInSAR), an advanced version of InSAR, is an effective tool for measuring ground deformation using temporally stable reference points or persistent scatterers. We have applied both PSInSAR and Small Baseline Subset (SBAS) methods, based on the spatial correlation of interferometric phase, to estimate the ground deformation and time-series analysis. In this study, we select Las Vegas, Nevada, USA as our test area to detect the ground deformation along satellite line-of-sight (LOS) during November 1992–September 2000 using 44 C-band SAR images of the European Remote Sensing (ERS-1 and ERS-2) satellites. We observe the ground displacement rate of Las Vegas is in the range of ?19 to 8 mm/year in the same period. We also cross-compare PSInSAR and SBAS using mean LOS velocity and time-series. The comparison shows a correlation coefficient of 0.9467 in the case of mean LOS velocity. Along this study, we validate the ground deformation results from the satellite with the ground water depth of Las Vegas using time-series analysis, and the InSAR measurements show similar patterns with ground water data. 相似文献
152.
K. Babu Govindha Raj 《Journal of the Indian Society of Remote Sensing》2017,45(6):1031-1038
The importance of mass wasting in glacier environments and its impacts on glacier dynamics is not fully understood. This is the first occurrence of a debris avalanche event onto a Himalayan glacier through satellite data analysis. The analysis of various factors indicates the slide was a climate-driven hill-slope event activated in 2009 masking the Miyar glacier surface up to ~1.5% including its both lateral moraines and medial moraines. Due to this addition the glacier had neither advance nor retreat from 2009 to 2014. Eventually the debris will contribute to the supraglacial and englacial debris of the glacier. This showcases the way of mass wasting an important contribution to the debris budget of the Himalayan glaciers. 相似文献
153.
Zhenliang Xu Yi Sun Zhenling Ma Yanhuan Li 《Journal of the Indian Society of Remote Sensing》2017,45(6):939-943
This paper has established a high-precision hierarchical estimated pose parameters of image. Firstly, we select corresponding three image points of 3D points which constitute the largest area in image as a base, in order to estimate the depth and translate information; then based on the above method, we obtain the scale parameter of camera exterior information. And finally, the topic is transformed to a problem of estimating rotation relationship by vector, using Procrustes theory to obtain the best estimate of the angle elements of exterior parameters. The method can effectively solve problems which depth and coupling pose parameters cannot deal with. Experimental results show that this method of determining position and orientation parameter estimation model is of briefness, easy convergence and it can also achieve higher parameter estimation accuracy than the direct projection matrix factorization. 相似文献
154.
Single-frequency precise point positioning (SF-PPP) is a potential precise positioning technique due to the advantages of the high accuracy in positioning after convergence and the low cost in operation. However, there are still challenges limiting its applications at present, such as the long convergence time, the low reliability, and the poor satellite availability and continuity in kinematic applications. In recent years, the achievements in the dual-frequency PPP have confirmed that its performance can be significantly enhanced by employing the slant ionospheric delay and receiver differential code bias (DCB) constraint model, and the multi-constellation Global Navigation Satellite Systems (GNSS) data. Accordingly, we introduce the slant ionospheric delay and receiver DCB constraint model, and the multi-GNSS data in SF-PPP modular together. In order to further overcome the drawbacks of SF-PPP in terms of reliability, continuity, and accuracy in the signal easily blocking environments, the inertial measurements are also adopted in this paper. Finally, we form a new approach to tightly integrate the multi-GNSS single-frequency observations and inertial measurements together to ameliorate the performance of the ionospheric delay and receiver DCB-constrained SF-PPP. In such model, the inter-system bias between each two GNSS systems, the inter-frequency bias between each two GLONASS frequencies, the hardware errors of the inertial sensors, the slant ionospheric delays of each user-satellite pair, and the receiver DCB are estimated together with other parameters in a unique Kalman filter. To demonstrate its performance, the multi-GNSS and low-cost inertial data from a land-borne experiment are analyzed. The results indicate that visible positioning improvements in terms of accuracy, continuity, and reliability can be achieved in both open-sky and complex conditions while using the proposed model in this study compared to the conventional GPS SF-PPP. 相似文献
155.
This work is an investigation of three methods for regional geoid computation: Stokes’s formula, least-squares collocation (LSC), and spherical radial base functions (RBFs) using the spline kernel (SK). It is a first attempt to compare the three methods theoretically and numerically in a unified framework. While Stokes integration and LSC may be regarded as classic methods for regional geoid computation, RBFs may still be regarded as a modern approach. All methods are theoretically equal when applied globally, and we therefore expect them to give comparable results in regional applications. However, it has been shown by de Min (Bull Géod 69:223–232, 1995. doi: 10.1007/BF00806734) that the equivalence of Stokes’s formula and LSC does not hold in regional applications without modifying the cross-covariance function. In order to make all methods comparable in regional applications, the corresponding modification has been introduced also in the SK. Ultimately, we present numerical examples comparing Stokes’s formula, LSC, and SKs in a closed-loop environment using synthetic noise-free data, to verify their equivalence. All agree on the millimeter level. 相似文献
156.
The Global Navigation Satellite System presents a plausible and cost-effective way of computing the total electron content (TEC). But TEC estimated value could be seriously affected by the differential code biases (DCB) of frequency-dependent satellites and receivers. Unlike GPS and other satellite systems, GLONASS adopts a frequency-division multiplexing access mode to distinguish different satellites. This strategy leads to different wavelengths and inter-frequency biases (IFBs) for both pseudo-range and carrier phase observations, whose impacts are rarely considered in ionospheric modeling. We obtained observations from four groups of co-stations to analyze the characteristics of the GLONASS receiver P1P2 pseudo-range IFB with a double-difference method. The results showed that the GLONASS P1P2 pseudo-range IFB remained stable for a period of time and could catch up to several meters, which cannot be absorbed by the receiver DCB during ionospheric modeling. Given the characteristics of the GLONASS P1P2 pseudo-range IFB, we proposed a two-step ionosphere modeling method with the priori IFB information. The experimental analysis showed that the new algorithm can effectively eliminate the adverse effects on ionospheric model and hardware delay parameters estimation in different space environments. During high solar activity period, compared to the traditional GPS + GLONASS modeling algorithm, the absolute average deviation of TEC decreased from 2.17 to 2.07 TECu (TEC unit); simultaneously, the average RMS of GPS satellite DCB decreased from 0.225 to 0.219 ns, and the average deviation of GLONASS satellite DCB decreased from 0.253 to 0.113 ns with a great improvement in over 55%. 相似文献
157.
Representing the spherical harmonic spectrum of a field on the sphere in terms of its amplitude and phase is termed as its polar form. In this study, we look at how the amplitude and phase are affected by linear low-pass filtering. The impact of filtering on amplitude is well understood, but that on phase has not been studied previously. Here, we demonstrate that a certain class of filters only affect the amplitude of the spherical harmonic spectrum and not the phase, but the others affect both the amplitude and phase. Further, we also demonstrate that the filtered phase helps in ascertaining the efficacy of decorrelation filters used in the grace community. 相似文献
158.
Natalia Panafidina Urs Hugentobler Manuela Seitz Hana Krásná 《Journal of Geodesy》2017,91(12):1503-1512
This paper studies the connection between the subdaily model for polar motion used in the processing of very long baseline interferometry (VLBI) observations and the estimated nutation offsets. By convention accepted by the International Earth Rotation Service, the subdaily model for polar motion recommended for routine processing of geodetic observations does not contain any daily retrograde terms due to their one-to-one correlation with the nutation. Nevertheless, for a 24-h VLBI solution a part of the signal contained in the polar motion given by the used subdaily model is numerically mistaken for a retrograde daily sidereal signal. This fictitious retrograde daily signal contributes to the estimated nutation, leading to systematic differences between the nutation offsets from VLBI solutions computed with different subdaily polar motion models. We demonstrate this effect using solutions for all suitable 24-h VLBI sessions over a time span of 11 years (2000–2011). By changing the amplitudes of one tidal term in the underlying subdaily model for polar motion and comparing the estimated parameters to the solutions computed with the unchanged subdaily model, the paper shows and explains theoretically the effects produced by the individual subdaily terms on the VLBI nutation estimates. 相似文献
159.
Tropospheric refractivity and zenith path delays from least-squares collocation of meteorological and GNSS data 总被引:1,自引:0,他引:1
Karina Wilgan Fabian Hurter Alain Geiger Witold Rohm Jarosław Bosy 《Journal of Geodesy》2017,91(2):117-134
Precise positioning requires an accurate a priori troposphere model to enhance the solution quality. Several empirical models are available, but they may not properly characterize the state of troposphere, especially in severe weather conditions. Another possible solution is to use regional troposphere models based on real-time or near-real time measurements. In this study, we present the total refractivity and zenith total delay (ZTD) models based on a numerical weather prediction (NWP) model, Global Navigation Satellite System (GNSS) data and ground-based meteorological observations. We reconstruct the total refractivity profiles over the western part of Switzerland and the total refractivity profiles as well as ZTDs over Poland using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zürich. In these two case studies, profiles of the total refractivity and ZTDs are calculated from different data sets. For Switzerland, the data set with the best agreement with the reference radiosonde (RS) measurements is the combination of ground-based meteorological observations and GNSS ZTDs. Introducing the horizontal gradients does not improve the vertical interpolation, and results in slightly larger biases and standard deviations. For Poland, the data set based on meteorological parameters from the NWP Weather Research and Forecasting (WRF) model and from a combination of the NWP model and GNSS ZTDs shows the best agreement with the reference RS data. In terms of ZTD, the combined NWP-GNSS observations and GNSS-only data set exhibit the best accuracy with an average bias (from all stations) of 3.7 mm and average standard deviations of 17.0 mm w.r.t. the reference GNSS stations. 相似文献
160.
New spherical integral formulas between components of the second- and third-order gravitational tensors are formulated in this article. First, we review the nomenclature and basic properties of the second- and third-order gravitational tensors. Initial points of mathematical derivations, i.e., the second- and third-order differential operators defined in the spherical local North-oriented reference frame and the analytical solutions of the gradiometric boundary-value problem, are also summarized. Secondly, we apply the third-order differential operators to the analytical solutions of the gradiometric boundary-value problem which gives 30 new integral formulas transforming (1) vertical-vertical, (2) vertical-horizontal and (3) horizontal-horizontal second-order gravitational tensor components onto their third-order counterparts. Using spherical polar coordinates related sub-integral kernels can efficiently be decomposed into azimuthal and isotropic parts. Both spectral and closed forms of the isotropic kernels are provided and their limits are investigated. Thirdly, numerical experiments are performed to test the consistency of the new integral transforms and to investigate properties of the sub-integral kernels. The new mathematical apparatus is valid for any harmonic potential field and may be exploited, e.g., when gravitational/magnetic second- and third-order tensor components become available in the future. The new integral formulas also extend the well-known Meissl diagram and enrich the theoretical apparatus of geodesy. 相似文献