首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   1篇
  国内免费   5篇
测绘学   5篇
大气科学   6篇
地球物理   19篇
地质学   43篇
海洋学   3篇
天文学   6篇
综合类   2篇
自然地理   1篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   5篇
  2019年   1篇
  2018年   3篇
  2017年   9篇
  2016年   4篇
  2014年   9篇
  2013年   14篇
  2012年   4篇
  2011年   3篇
  2010年   6篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1997年   1篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有85条查询结果,搜索用时 10 毫秒
11.
This paper deals with detailed analysis of the fiasco created by the Tehri High Dam in Uttarakhand, India, particularly in terms of resettlement and rehabilitation of the local inhabitants. Aspects pertaining to the environmental issues are also discussed. Currently, the river valleys in Uttarakhand state of India are the targets of increasing hydroelectric projects. Virtually all rivers are being exploited for generating environmental friendly power. Having being learned the hard lesson from Tehri Dam, it has been decided to opt for such schemes in which comparatively little submergence and tempering with the fragile eco-systems is involved.However, our observations suggest that even in such schemes if due care is not taken they may turn out to be a failure.  相似文献   
12.
Closed form analytical expressions of stresses and displacements at any field point due to a very long dip-slip fault of finite width buried in a homogeneous, isotropic elastic half-space, are presented. Airy stress function is used to derive the expressions of stresses and displacements which depend on the dip angle and depth of the upper edge of the fault. The effect of dip angle and depth of the upper edge of the fault on stresses and displacements is studied numerically and the results obtained are presented graphically. Contour maps for stresses and displacements are also presented. The results of Rani and Singh (1992b) and Freund and Barnett (1976) have been reproduced.  相似文献   
13.
The aim of the present study is to understand the impact of oceanic heat potential in relation to the intensity of tropical cyclones (TC) in the Bay of Bengal during the pre-monsoon (April–May) and post-monsoon (October–November) cyclones for the period 2006–2010. To accomplish this, the two-layer gravity model (TLGM) is employed to estimate daily tropical cyclone heat potential (TCHP) utilizing satellite altimeter data, satellite sea surface temperature (SST), and a high-resolution comprehensive ocean atlas developed for Indian Ocean, subsequently validated with in situ ARGO profiles. Accumulated TCHP (ATCHP) is estimated from genesis to the maximum intensity of cyclone in terms of minimum central pressure along their track of all the cyclones for the study period using TLGM generated TCHP and six-hourly National Centre for Environmental Prediction Climate Forecast System Reanalysis data. Similarly, accumulated sea surface heat content (ASSHC) is estimated using satellite SST. In this study, the relationship between ATCHP and ASSHC with the central pressure (CP) which is a function of TC intensity is developed. Results reveal a distinct relationship between ATCHP and CP during both the seasons. Interestingly, it is seen that requirement of higher ATCHP during pre-monsoon cyclones is required to attain higher intensity compared to post-monsoon cyclones. It is mainly attributed to the presence of thick barrier layer (BL) resulting in higher enthalpy fluxes during post-monsoon period, where as such BL is non-existent during pre-monsoon period.  相似文献   
14.
So far all known singularity-free cosmological models are cylindrically symmetric. Here we present a new family of spherically symmetric non-singular models filled with imperfect fluid and radial heat flow, and satisfying all the energy conditions. For larget anisotropy in pressure and heat flux tend to vanish leading to a perfect fluid. There is a free function of time in the model, which can be suitably chosen for non-singular behaviour and there exist multiplicity of such choices.  相似文献   
15.
On 28th September 2015, India launched its first astronomical space observatory AstroSat, successfully. AstroSat carried five astronomy payloads, namely, (i) Cadmium Zinc Telluride Imager (CZTI), (ii) Large Area X-ray Proportional Counter (LAXPC), (iii) Soft X-ray Telescope (SXT), (iv) Ultra Violet Imaging Telescope (UVIT) and (v) Scanning Sky Monitor (SSM) and therefore, has the capability to observe celestial objects in multi-wavelength. Four of the payloads are co-aligned along the positive roll axis of the spacecraft and the remaining one is placed along the positive yaw axis direction. All the payloads are sensitive to bright objects and specifically, require avoiding bright Sun within a safe zone of their bore axes in orbit. Further, there are other operational constraints both from spacecraft side and payloads side which are to be strictly enforced during operations. Even on-orbit spacecraft manoeuvres are constrained to about two of the axes in order to avoid bright Sun within this safe zone and a special constrained manoeuvre is exercised during manoeuvres. The planning and scheduling of the payloads during the Performance Verification (PV) phase was carried out in semi-autonomous/manual mode and a complete automation is exercised for normal phase/Guaranteed Time Observation (GuTO) operations. The process is found to be labour intensive and several operational software tools, encompassing spacecraft sub-systems, on-orbit, domain and environmental constraints, were built-in and interacted with the scheduling tool for appropriate decision-making and science scheduling. The procedural details of the complex scheduling of a multi-wavelength astronomy space observatory and their working in PV phase and in normal/GuTO phases are presented in this paper.  相似文献   
16.
17.
A variety of low‐ to high‐pressure metamorphic assemblages occur in the metabasic rocks and metachert in the Upper Cretaceous–Eocene ophiolite belt of the central part of the Naga Hills, an area in the northern sector of the Indo–Myanmar Ranges in the Indo–Eurasian collision zone. The ophiolite suite includes peridotite tectonite containing garnet lherzolite xenoliths, layered ultramafic–mafic cumulates, metabasic rocks, basaltic lava, volcaniclastics, plagiogranite, and pelagic sediments emplaced as dismembered and imbricated bodies at thrust contacts between moderately metamorphosed accretionary rocks/basement (Nimi Formation/Naga Metamorphics) and marine sediments (Disang Flysch). It is overlain by coarse clastic Paleogene sediments of ophiolite‐derived rocks (Jopi/Phokphur Formation). The metabasic rocks, including high‐grade barroisite/glaucophane‐bearing epidote eclogite and glaucophane schist, and low‐grade greenschist and prehnite–clinochlore schist, are associated with lava flows and ultramafic cumulates at the western thrust contact. Chemically, the metabasites show a low‐K tholeiitic affinity that favors derivation from a depleted mantle source as in the case of mid‐ocean ridge basalt. Thermobarometry indicates peak P–T conditions of about 20 kb and 525°C. Retrogression related to uplift is marked by replacement of barroisite and omphacite by glaucophane followed by secondary actinolite, albite, and chlorite formation. A metabasic lens with an eclogite core surrounded by successive layers of glaucophane schist and greenschist provides field evidence of retrogression and uplift. Presence of S‐C mylonite in garnet lherzolite and ‘mica fish’ in glaucophane schist indicates ductile deformation in the shear zone along which the ophiolite was emplaced.  相似文献   
18.
Variation of atmospheric thermodynamical structure parameters between days of thunderstorm occurrence and non-occurrence is presented based on data sets obtained during Severe Thunderstorm-Observations and Regional Modeling (STORM) experiments conducted over Kharagpur (22.3°N, 87.2°E) in pre-monsoon season of 2009 and 2010. Potential instability (stable to neutral) is noticed in the lower layers and enhanced (suppressed) convection in the middle troposphere during thunderstorm (non-thunderstorm) days. Low-level jets are observed during all days of the experimental period but with higher intensity on thunderstorm days. Convective available potential energy (CAPE) builds up until thunderstorm occurrence and becomes dissipated soon after, whereas convective inhibition (CIN) is greatly decreased prior to the event on thunderstorm days. In contrast, higher CAPE and CIN are noticed on non-thunderstorm days. Analysis of thermodynamic indices showed that indices including moisture [humidity index (HI) and dew point temperature at 850 hPa (DPT850)] are useful in differentiating thunderstorm from non-thunderstorm days. The present study reveals that significant moisture availability in the lower troposphere in the presence of convective instability conditions results in thunderstorm occurrence at Kharagpur.  相似文献   
19.
Decadal prediction using climate models faces long-standing challenges. While global climate models may reproduce long-term shifts in climate due to external forcing, in the near term, they often fail to accurately simulate interannual climate variability, as well as seasonal variability, wet and dry spells, and persistence, which are essential for water resources management. We developed a new climate-informed K-nearest neighbour (K-NN)-based stochastic modelling approach to capture the long-term trend and variability while replicating intra-annual statistics. The climate-informed K-NN stochastic model utilizes historical data along with climate state information to provide improved simulations of weather for near-term regional projections. Daily precipitation and temperature simulations are based on analogue weather days that belong to years similar to the current year's climate state. The climate-informed K-NN stochastic model is tested using 53 weather stations in the Northeast United States with an evident monotonic trend in annual precipitation. The model is also compared to the original K-NN weather generator and ISIMIP-2b GFDL general circulation model bias-corrected output in a cross-validation mode. Results indicate that the climate-informed K-NN model provides improved simulations for dry and wet regimes, and better uncertainty bounds for annual average precipitation. The model also replicates the within-year rainfall statistics. For the 1961–1970 dry regime, the model captures annual average precipitation and the intra-annual coefficient of variation. For the 2005–2014 wet regime, the model replicates the monotonic trend and daily persistence in precipitation. These improved modelled precipitation time series can be used for accurately simulating near-term streamflow, which in turn can be used for short-term water resources planning and management.  相似文献   
20.
Bhadra  B. K.  Gor  Naresh  Jain  Ashish K.  Meena  Hansraj  Rao  S. Srinivasa 《Hydrogeology Journal》2021,29(8):2705-2724

The Great Rann of Kachchh (GRK) in Gujarat, India, is the largest salt desert in the world, which is usually filled with seawater ingression during high tide from the Arabian Sea. As a result, the soil gets saturated with saline water that has percolated down for several meters. Groundwater exploration in Rann area is a challenging task due to the prevailing hostile environment. For this purpose, multisensor satellite data have been used to delineate the palaeochannels in search of an alternate source of drinking water. In GRK, palaeochannels represent the zone of elevated fluvial sediments with respect to the surroundings. Evolutionary history of the palaeochannels indicates upliftment of GRK area during Allah Bund faulting. For assessing the groundwater potential of the palaeochannels, high-resolution electrical resistivity tomography (HERT) surveys have been carried out with the pole-dipole method. Electrical resistivity tomograms along 710 m traverses to a depth of 250 m in Dharmsala and Gainda area show higher-resistivity zones (medium to coarse sand with brackish water) below a thick low-resistivity layer (clay with saline water). A few exploratory drillings in the area confirm the existence of the palaeochannels, which act as a confined aquifer below 100 m depth. The artesian condition of the two drilled wells at Gainda and Khardoi along the northern boundary of GRK may be attributed to hydraulic gradient along the confined layers from the Tharparkar region in Pakistan. Thus, HERT is found to be a faster and more cost-effective geophysical survey technique for study of the deep aquifer.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号