首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26018篇
  免费   433篇
  国内免费   1253篇
测绘学   1724篇
大气科学   2249篇
地球物理   4832篇
地质学   12200篇
海洋学   1221篇
天文学   1678篇
综合类   2332篇
自然地理   1468篇
  2024年   20篇
  2023年   34篇
  2022年   95篇
  2021年   149篇
  2020年   100篇
  2019年   123篇
  2018年   4860篇
  2017年   4142篇
  2016年   2676篇
  2015年   357篇
  2014年   235篇
  2013年   190篇
  2012年   1128篇
  2011年   2858篇
  2010年   2137篇
  2009年   2426篇
  2008年   1980篇
  2007年   2430篇
  2006年   106篇
  2005年   245篇
  2004年   423篇
  2003年   435篇
  2002年   257篇
  2001年   67篇
  2000年   64篇
  1999年   23篇
  1998年   28篇
  1997年   14篇
  1996年   12篇
  1995年   10篇
  1994年   5篇
  1993年   4篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1981年   21篇
  1980年   19篇
  1976年   7篇
  1958年   1篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
GPS is a promising tool for real-time monitoring of deformations of slopes or large structures. However, remaining systematic effects in GPS phase observations after double differencing and application of a priori models affect the resulting coordinates. They complicate the proper separation of the actual deformations from pseudo-deformations induced by the systematic effects. This paper shows that for small monitoring networks (baseline lengths <5 km) only affine distortions of the network geometry are generated by the remaining distance dependent systematic effects, e.g. unmodelled tropospheric and ionospheric propagation effects, or satellite orbit errors. Hence, a generic correction model is given by a three-dimensional affine transformation involving a maximum of 12 transformation parameters. For the determination of these parameters, four high quality GPS stations are necessary which are not affected by the actual deformations to be monitored. Based on the analysis of network geometries of synthetic GPS networks with large height differences and considering the physics of the GPS observations it is shown, however, that less than 12 parameters are sufficient for the computation of the corrections. The proposed 8 parameter model was applied to the GPS monitoring network of the Gradenbach landslide. For this small network with large height differences, it was shown that the distortions can be reduced by about 75%.  相似文献   
63.
The unceasing change problem of land information systems can be resolved through the refactoring and design pattern. To promote the implementation of design pattern and refactoring methods in developin...  相似文献   
64.
Accurate upward continuation of gravity anomalies supports future precision, free-inertial navigation systems, since the latter cannot by themselves sense the gravitational field and thus require appropriate gravity compensation. This compensation is in the form of horizontal gravity components. An analysis of the model errors in upward continuation using derivatives of the standard Pizzetti integral solution (spherical approximation) shows that discretization of the data and truncation of the integral are the major sources of error in the predicted horizontal components of the gravity disturbance. The irregular shape of the data boundary, even the relatively rough topography of a simulated mountainous region, has only secondary effect, except when the data resolution is very high (small discretization error). Other errors due to spherical approximation are even less important. The analysis excluded all measurement errors in the gravity anomaly data in order to quantify just the model errors. Based on a consistent gravity field/topographic surface simulation, upward continuation errors in the derivatives of the Pizzetti integral to mean altitudes of about 3,000 and 1,500 m above the mean surface ranged from less than 1 mGal (standard deviation) to less than 2 mGal (standard deviation), respectively, in the case of 2 arcmin data resolution. Least-squares collocation performs better than this, but may require significantly greater computational resources.  相似文献   
65.
Studies on small-world networks have received intensive interdisciplinary attention during the past several years. It is well-known among researchers that a small-world network is often characterized by high connectivity and clustering, but so far there exist few effective approaches to evaluate small-world properties, especially for spatial networks. This paper proposes a method to examine the small-world properties of spatial networks from the perspective of network autocorrelation. Two network autocorrelation statistics, Moran’s I and Getis–Ord’s G, are used to monitor the structural properties of networks in a process of “rewiring” networks from a regular to a random network. We discovered that Moran’s I and Getis–Ord’s G tend to converge and have relatively low values when properties of small-world networks emerge. Three transportation networks at the national, metropolitan, and intra-city levels are analyzed using this approach. It is found that spatial networks at these three scales possess small-world properties when the correlation lag distances reach certain thresholds, implying that the manifestation of small-world phenomena result from the interplay between the network structure and the dynamics taking place on the network.   相似文献   
66.
We demonstrate the possibility to improve the signal-to-noise ratio of superconducting gravity time-series by correcting for local hydrological effects. Short-term atmospheric events associated with heavy rain induce step-like gravity signals that deteriorate the frequency spectrum estimates. Based on 4D modeling constrained by high temporal resolution rain gauge data, rainfall admittances for the Vienna and Membach superconducting gravity stations are calculated. This allows routine correction for Newtonian rain water effects, which reduces the standard deviation of residuals after tidal parameter adjustment by 10%. It also improves the correction of steps of instrumental origin when they coincide with step-like water mass signals.  相似文献   
67.
The IVS Intensive sessions are single-baseline, 1-h VLBI sessions carried out everyday in order to determine Universal Time (UT1). We investigate different possibilities to improve the results of such sessions. We do this investigation by extracting 2-h single-baseline sessions from the CONT08 data set. These are analysed like normal Intensives, and the results are compared to the results of the analysis of the full CONT08 data set. We find that tropospheric asymmetry is the major error source for the single-baseline sessions. It is possible to improve the accuracy of the estimated UT1 either by using accurate a priori tropospheric gradients or by estimating gradients in the data analysis.  相似文献   
68.
This paper present the results of a preliminary study to assess the potential of the visible, NIR and SWIR energy of the EMR in differentiating iron ores of different grades in a rapid manner using hyperspectral radiometry. Using different iron ore samples from Noamundi and Joda mines, Jharkhand and Orissa, states of India, certain spectro-radiometric measurements and geochemical analysis were carried out and the results have been presented. It was observed that the primary spectral characteristics of these iron ores lie in the 850 to 900 nm and 650–750 nm regions. The spectral parameters for each curve used for studying the iron ores are: (i) the slopes of the spectral curve in 685–725 nm region; (ii) position of the peak with respect to wavelength in 730–750 nm region and (iii) radius of curvature of the absorption trough in the 850–900 nm region. Comparison of these spectral parameters and the geochemistry of the samples indicates that the position of the peak of the curve in 730–750 nm region shifts towards longer wavelength with increasing iron oxide content, while the slope of the curvature in the 685–725 nm region has a strong negative correlation with the iron oxide content of the samples. Similarly, a strong negative correlation is observed between the radius of curvature of the 850–900 nm absorption trough and the iron oxide content. Such strong correlations indicate that hyperspectral radiometry in the visible and NIR regions can give a better estimate and quantification of the grades of iron ores. This study has demonstrated that generation of empirical models using hyperspectral radiometric techniques is helpful to quantify the grade of iron ores with limited geochemical analysis.  相似文献   
69.
70.
Hyperspectral data are generally noisier compared to broadband multispectral data because their narrow bandwidth can only capture very little energy that may be overcome by the self-generated noise inside the sensors. It is desirable to smoothen the reflectance spectra. This study was carried out to see the effect of smoothing algorithms - Fast-Fourier Transform (FFT) and Savitzky–Golay (SG) methods on the statistical properties of the vegetation spectra at varying filter sizes. The data used in the study is the reflectance spectra data obtained from Hyperion sensor over an agriculturally dominated area in Modipuram (Uttar Pradesh). The reflectance spectra were extracted for wheat crop at different growth stages. Filter sizes were varied between 3 and 15 with the increment of 2. Paired t-test was carried out between the original and the smoothed data for all the filter sizes in order to see the extent of distortion with changing filter sizes. The study showed that in FFT, beyond filter size 11, the number of locations within the spectra where the smooth spectra were statistically different from its original counterpart increased to 14 and reaches 21 at the filter size 15. However, in SG method, number of statistically different locations were more than those found in the FFT, but the number of locations did not changing drastically. The number of statistically disturbed locations in SG method varied between 16 and 19. The optimum filter size for smoothing the vegetation spectra was found to be 11 in FFT and 9 in SG method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号