首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   16篇
  国内免费   8篇
测绘学   7篇
大气科学   20篇
地球物理   81篇
地质学   102篇
海洋学   15篇
天文学   35篇
综合类   18篇
自然地理   15篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   8篇
  2018年   17篇
  2017年   12篇
  2016年   23篇
  2015年   22篇
  2014年   19篇
  2013年   30篇
  2012年   15篇
  2011年   16篇
  2010年   12篇
  2009年   14篇
  2008年   6篇
  2007年   10篇
  2006年   9篇
  2005年   6篇
  2004年   12篇
  2003年   9篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1982年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有293条查询结果,搜索用时 15 毫秒
251.
Discovery of the remains of belemnites referred to the Hibolithes sp. from the Jurassic–Cretaceous Pedawan Formation in Sarawak, on the island of Borneo(Malaysia) comprises four fragments of belemnite rostra. The specimens are characterized by multiple fractures and vein filling. Two fragments measuring about 130 mm are relatively intact, with only part of the alveolar region missing; a third piece represents the middle part of a rostrum, and the fourth specimen is too fragmentary to be assigned to any specific part of the rostrum. Based on specimen characteristics, a Tithonian–Hauterivian age is plausible. The sedimentary succession that yielded the belemnite material comprises thick shale that reflects the Te division of Bouma sequence. The occurrence of a Hibolithes taxon in the uppermost Jurassic to lowermost Cretaceous Pedawan Formation sediments in Borneo reflects a near to global palaeobiogeographic distribution of this genus.  相似文献   
252.
The aim of the present research is to monitor changes in herbage production during the grazing season in the Semirom and Brojen regions, Iran, using multitemporal Moderate Resolution Imaging Spectroradiometer (MODIS) data. At first, various preprocessing steps were applied to a topography map. The atmospheric and topographic corrections were applied using subtraction of the dark object method and the Lambert method. Image processing, including false-color composite, principal component analysis, and vegetation indices were employed to produce land use and pasture production maps. Vegetation sampling was carried out over a period of 4 months during June–September 2008, using a stratified random sampling method. Twenty random sampling points were selected, and herbage production was estimated and verified with the double-checking method. Four MODIS data sets were used in this study. The models for image processing and integrating ground data with satellite images were processed, and the resulting images were categorized into seven classes. Finally, the land covers were verified for accuracy. A postclassification analysis was carried out to verify the seven class change detections. The results confirmed that Normalized Difference Vegetation Index (NDVI) and Soil-Adjusted Vegetation Index (SAVI) maps had a close relationship with the field data. The indices produced with shortwave infrared bands had a close relationship with field data where the ground cover and yields were high. The R 2 value observed was 0.85. The changes in the pasture vegetation were high during the growing season in more than 90 % of the pastures. During the growing season, most changes in the pastures belonged to class 5 and 2 in the NDVI and SAVI index maps, respectively.  相似文献   
253.
Abstract

The paper discusses aspects of the isotopic composition (tritium and stable isotopes) of precipitation, which was monitored from 2000 to 2003 at 12 stations in Syria. The seasonal variations in δ18O are smaller at the western stations than at the eastern ones due to low seasonal temperature variations. A good correlation between δ2H and δ18O was obtained for each station, and the slopes of the local meteoric water lines are significantly lower than the Global Meteoric Water Line. Values of d-excess decrease from 19‰ at the western stations to 13‰ at the eastern ones, indicating the influence of precipitation generated by air masses coming from the Mediterranean Sea. A reliable altitude effect represented by depletion of heavy stable isotopes (δ18O and δ2H), of about??0.21‰ and??1.47‰ per 100 m elevation, respectively, was observed. Monthly tritium contents in precipitation, and seasonal variations, are less at the western stations than at the eastern ones. The weighted mean tritium values are between 3 and 9 TU, and increase with distance from the Syrian coast by 1 TU/100 km.

Citation Al Charideh, A. R. & Abou Zakhem, B. (2010) Distribution of tritium and stable isotopes in precipitation in Syria. Hydrol. Sci. J. 55(5), 832–843.  相似文献   
254.
A field study of oxygen-enhanced biodegradation was carried out in a sandy iron-rich ground water system contaminated with gasoline hydrocarbons. Prior to the oxygen study, intrinsic microbial biodegradation in the contaminant plume had depleted dissolved oxygen and created anaerobic conditions. An oxygen diffusion system made of silicone polymer tubing was installed in an injection well within an oxygen delivery zone containing coarse highly permeable sand. During the study, this system delivered high dissolved oxygen (DO) levels (39 mg/L) to the ground water within a part of the plume. The ground water was sampled at a series of monitors in the test zone downgradient of the delivery well to determine the effect of oxygen on dissolved BTEX, ground water geochemistry, and microbially mediated biodegradation processes. The DO levels and Eh increased markedly at distances up to 2.3 m (7.5 feet) downgradient. Potential biofouling and iron precipitation effects did not clog the well screens or porous medium. The increased dissolved oxygen enhanced the population of aerobes while the activity of anaerobic sulfate-reducing bacteria and methanogens decreased. Based on concentration changes, the estimated total rate of BTEX biodegradation rose from 872 mg/day before enhancement to 2530 mg/day after 60 days of oxygen delivery. Increased oxygen flux to the test area could account for aerobic biodegradation of 1835 mg/day of the BTEX. The estimated rates of anaerobic biodegradation processes decreased based on the flux of sulfate, iron (II), and methane. Two contaminants in the plume, benzene and ethylbenzene, are not biodegraded as readily as toluene or xylenes under anaerobic conditions. Following oxygen enhancement, however, the benzene and ethylbenzene concentrations decreased about 98%, as did toluene and total xylenes.  相似文献   
255.
A probabilistic model is presented to compute the probability density function (PDF) of the ultimate bearing capacity of a strip footing resting on a spatially varying soil. The soil cohesion and friction angle were considered as two anisotropic cross‐correlated non‐Gaussian random fields. The deterministic model was based on numerical simulations. An efficient uncertainty propagation methodology that makes use of a non‐intrusive approach to build up a sparse polynomial chaos expansion for the system response was employed. The probabilistic numerical results were presented in the case of a weightless soil. Sobol indices have shown that the variability of the ultimate bearing capacity is mainly due to the soil cohesion. An increase in the coefficient of variation of a soil parameter (c or φ) increases its Sobol index, this increase being more significant for the friction angle. The negative correlation between the soil shear strength parameters decreases the response variability. The variability of the ultimate bearing capacity increases with the increase in the coefficients of variation of the random fields, the increase being more significant for the cohesion parameter. The decrease in the autocorrelation distances may lead to a smaller variability of the ultimate bearing capacity. Finally, the probabilistic mean value of the ultimate bearing capacity presents a minimum. This minimum is obtained in the isotropic case when the autocorrelation distance is nearly equal to the footing breadth. However, for the anisotropic case, this minimum is obtained at a given value of the ratio between the horizontal and vertical autocorrelation distances. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
256.
The middle Miocene Valdearenas–Muduex section in the internally-drained, continental Madrid Basin (central Spain) is dated bio-magnetostratigraphically between 15.2 Ma and 11.5 Ma. The section contains two formation-scale, sedimentary sequences, that both consist of a siliciclastic lower part and a calcareous upper part. Siliciclastic sedimentation took place in distal floodplain and fluvial environments, while limestones resulted from carbonate precipitation in calcic soil profiles and in ephemeral lacustrine water bodies. Spectral analysis of the L* colour time series points to the influence of the ~ 405-kyr and 0.97-Myr eccentricity cycles, while the bases of the two calcareous intervals correlate to successive minima of the 2.4-Myr eccentricity cycle. The 405-kyr cycle lags maximum eccentricity, whereas the 0.97 and 2.4-Myr cycles lag minimum eccentricity, each by approximately a quarter of a cycle. No obliquity forcing is detected. The observed orbital configuration of 2.4-Myr minima at the base of limestone-dominated intervals is similar to a previously documented Late Miocene shift in the Teruel Basin of northeast Spain. Our results indicate that long-period eccentricity climate forcing may well be a significant player on long, tectonic time scales in continental basin fill.  相似文献   
257.
258.
259.
The MAGICC (Model for the Assessment of Greenhouse gas Induced Climate Change) model simulation has been carried out for the 2000–2100 period to investigate the impacts of future Indian greenhouse gas emission scenarios on the atmospheric concentrations of carbon dioxide, methane and nitrous oxide besides other parameters like radiative forcing and temperature. For this purpose, the default global GHG (Greenhouse Gases) inventory was modified by incorporation of Indian GHG emission inventories which have been developed using three different approaches namely (a) Business-As-Usual (BAU) approach, (b) Best Case Scenario (BCS) approach and (c) Economy approach (involving the country’s GDP). The model outputs obtained using these modified GHG inventories are compared with various default model scenarios such as A1B, A2, B1, B2 scenarios of AIM (Asia-Pacific Integrated Model) and P50 scenario (median of 35 scenarios given in MAGICC). The differences in the range of output values for the default case scenarios (i.e., using the GHG inventories built into the model) vis-à-vis modified approach which incorporated India-specific emission inventories for AIM and P50 are quite appreciable for most of the modeled parameters. A reduction of 7% and 9% in global carbon dioxide (CO2) emissions has been observed respectively for the years 2050 and 2100. Global methane (CH4) and global nitrous oxide (N2O) emissions indicate a reduction of 13% and 15% respectively for 2100. Correspondingly, global concentrations of CO2, CH4 and N2O are estimated to reduce by about 4%, 4% and 1% respectively. Radiative forcing of CO2, CH4 and N2O indicate reductions of 6%, 14% and 4% respectively for the year 2100. Global annual mean temperature change (incorporating aerosol effects) gets reduced by 4% in 2100. Global annual mean temperature change reduces by 5% in 2100 when aerosol effects have been excluded. In addition to the above, the Indian contributions in global CO2, CH4 and N2O emissions have also been assessed by India Excluded (IE) scenario. Indian contribution in global CO2 emissions was observed in the range of 10%–26%, 6%–36% and 10%–38% respectively for BCS, Economy and BAU approaches, for the years 2020, 2050 and 2100 for P50, A1B-AIM, A2-AIM, B1-AIM & B2-AIM scenarios. CH4 and N2O emissions indicate about 4%–10% and 2%–3% contributions respectively in the global CH4 and N2O emissions for the years 2020, 2050 and 2100. These Indian GHG emissions have significant influence on global GHG concentrations and consequently on climate parameters like RF and ∆T. The study reflects not only the importance of Indian emissions in the global context but also underlines the need of incorporation of country specific GHG emissions in modeling to reduce uncertainties in simulation of climate change parameters.  相似文献   
260.
Oceanic Islands in the Pacific and Indian Oceans have extremely small land areas, usually less than 500 km2, with maximum height about 4 m above sea level. The Republic of Maldives is an independent island nation in the Indian Ocean south of Sri Lanka which stretches vertically in the Indian Ocean from 07° 06'N - 0° 42'S. The land area of this island country is about 300 km2, and none of Maldives' 1190 islands has an elevation more than 3 m above sea level. In fact the Maldives has the distinction of being the flattest country on earth, making it extremely vulnerable to the effects of global warming. Of the south Asian countries, the Maldives is the most vulnerable nation, facing severe consequences as a result of global warming and sea level rise (SLR). Because of their obvious vulnerability to SLR, the Government of Maldives is very much concerned about climate change. As global warming and the related SLR is an important integrated environmental issue, the need of the hour is to monitor and assess these changes. The present article deals mainly with the analysis of the tidal and Sea Surface Temperature (SST) data observed at Male and Gan stations along the Maldives coast in the northern and southern hemispheres, respectively. The objective of the analysis is to study the trends of these parameters. Trend analysis is also performed on the corresponding air temperature data of both stations. The results show that Maldives coastal sea level is rising in the same way (rising trend) as the global sea level. The mean tidal level at Male has shown an increasing trend of about 4.1 mm/year.Similarly at Gan, near the equator,it has registered a positive trend of about 3.9 mm/year.Sea level variations are the manifestations of various changes that are taking place in the Ocean-Atmosphere system. Therefore, the variations in SST and air temperature are intimately linked to sea level rise. It is found that SST and air temperature have also registered an increasing trend at both stations. The evidence of rising trends suggest that careful future monitoring of these parameters is very much required. Tropical cyclones normally do not affect the Maldives coast. However, due to its isolated location, the long fetches in association with swells generated by storms, that originated in the far south have resulted in flooding. Thus the rising rate of sea level with high waves and flat topography have increased the risk of flooding and increased the rate of erosion and alteration of beaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号