首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   972篇
  免费   31篇
  国内免费   27篇
测绘学   34篇
大气科学   156篇
地球物理   193篇
地质学   251篇
海洋学   257篇
天文学   65篇
综合类   17篇
自然地理   57篇
  2023年   8篇
  2022年   11篇
  2021年   7篇
  2020年   18篇
  2019年   25篇
  2018年   37篇
  2017年   44篇
  2016年   74篇
  2015年   37篇
  2014年   60篇
  2013年   85篇
  2012年   62篇
  2011年   49篇
  2010年   56篇
  2009年   48篇
  2008年   48篇
  2007年   40篇
  2006年   43篇
  2005年   41篇
  2004年   29篇
  2003年   21篇
  2002年   19篇
  2001年   19篇
  2000年   17篇
  1999年   22篇
  1998年   9篇
  1997年   8篇
  1996年   7篇
  1995年   7篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   7篇
  1990年   3篇
  1989年   2篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   9篇
  1983年   3篇
  1982年   3篇
  1981年   7篇
  1979年   2篇
  1978年   2篇
  1974年   1篇
  1973年   5篇
  1972年   2篇
  1971年   2篇
  1968年   1篇
  1967年   3篇
排序方式: 共有1030条查询结果,搜索用时 437 毫秒
741.
We analyzed the motions of small sediment particles over a sinusoidal ripple due to an unsteady turbulent boundary layer flow using Large Eddy Simulation. The motions of sediment particles are described in terms of the Lagrangian framework as it is helpful in studying the structure of sediment suspension in detail. Strong coherent vortical structures are well developed along the upslope of the ripple surface during the accelerating flow phase, which effectively drag the particles to the ripple crest. At the maximum flow rate and at the decelerating flow phase, a cloud of vortical structures is developed vertically in the lee area of the ripple. Sediment particles render strong dispersion in the vertical direction when they are captured by these turbulent vortices, causing convective sediment flux that cannot be explained by the mean flows. The convective sediment suspension is strongest at the time of flow deceleration, while over a flat bed at the time of flow reversal. This observation suggests that bed form effect should be considered in modeling convective sediment flux.  相似文献   
742.
Acoustic Doppler Current Profilers (ADCP), designed for measuring velocity profiles, are widely used for the estimation of suspended sediment concentration from acoustic backscatter strength, but its application to estuarine environments requires further refinement. In this study, we examined the inversion capability of two ADCPs with 600 and 1200 kHz in three Korean estuaries: the supra-macrotidal Han River Estuary (HRE), microtidal Nakdong River Estuary (NRE), and anthropogenically altered macrotidal Yeongsan River Estuary (YRE). In particular, we examined the relative importance of the sound attenuations due to water (αw) and sediment (αs) in response to sediment characteristics (size and concentration) as well as changing salinity and temperature. The inverted concentration was compared with reference concentrations obtained either from water samples or Optical Backscatter Sensors. In NRE and YRE, where suspended sediment concentrations were less than 0.2 g/l, the acoustic inversion performed poorly only with αs (r = 0.20 and 0.38 for NRE and YRE, respectively), but well with αw (r = 0.66 and 0.42 for NRE and YRE, respectively). Thus, it is important to accurately constrain αw in low-concentration estuarine environments. However, we did not find that the varying αw performed considerably better than the constant αw. On the other hand, the acoustic inversion was poorest at HRE regardless of αw and αs (r = 0.71 and mean relative error = 45%). The large discrepancy appears to result from the poorly constrained, spatially and temporally varying sediment characteristics (grain size, density and concentration) due to non-local sediment transport in the macrotidal HRE.  相似文献   
743.
In this study, loss with time of dredged sea sand in a tidal embankment subject to sea level variation was examined through the centrifugal model test. The experimental results demonstrate that a differential subsidence occurs on the surface of the dredged-sea-sand fill and that the largest subsidence was observed just above the damaged portion of the geosynthetic mat. In addition, image analysis provided the largest displacement vector at the damaged portion of the geosynthetic mat, the shear-strain localization from the damaged portion of the geosynthetic mat through the center of the slope surface, and the crest of the dredge-sea sand fill. These displacement vectors and shear strains occurred early in the experiment and increased over time. Therefore, the loss of dredged sea sand can occur rapidly with damage to the geosynthetic mat and can possibly induce differential subsidence and cracks at the surface of the dredged-sea sand fill.  相似文献   
744.
This study aims to improve the forecasting skill for freezing precipitation. A total of 102 freezing precipitation cases were collected in South and North Korea from 2001 onwards. Temperature fields on the ground and in the atmosphere, vertical temperature profiles, geopotential fields, thickness fields and their spatiotemporal variations, and their combinations using the predominant precipitation-type nomograms (P-type nomograms) were classified and investigated to determine whether or not these data could be used as predictors. Results show that 1) the combination of the thicknesses of 1000-850 hPa and 850-700 hPa is recommended for the P-type nomograms for Korea, which is different from that used in the United States in threshold values; 2) 35 out of 72 synoptic situations are possible conditions for freezing precipitation; and 3) 3 groups out of those 35 situations, i.e., the 1000 hPa warmfront group, the mid-level southerly category of 850 hPa, and the mid-layer warm type in the vertical temperature profile, show the greatest frequency. Freezing precipitation occurs only in a small part of a possible area. Therefore, despite the increasing observations in the year-on-year trend, only a few of the cases have been detected. The possibility of observation errors is also one of the biggest problems. Therefore, the need for new equipment, such as a freezing rain detector (FRAD), to detect the phenomenon automatically is required and proposed. A denser observing system of FRADs and an ultra-fine gridded numerical model are suggested as a solution for the prediction of freezing precipitation.  相似文献   
745.
In this study, the projection of future drought conditions is estimated over South Korea based on the latest and most advanced sets of regional climate model simulations under the Representative Concentration Pathway (RCP4.5 and RCP8.5) scenarios, within the context of the national downscaling project of the Republic of Korea. The five Regional Climate Models (RCMs) are used to produce climate-change simulations around the Korean Peninsula and to estimate the uncertainty associated with these simulations. The horizontal resolution of each RCM is 12.5 km and model simulations are available for historical (1981-2010) and future (2021-2100) periods under forcing from the RCP4.5 and RCP8.5 scenarios. To assess the characteristics of drought on multiple time scales in the future, we use Standardized Precipitation Indices for 1-month (SPI- 1), 6-month (SPI-6) and 12-month (SPI-12). The number of drought months in the future is shown to be characterized by strong variability, with both increasing and decreasing trends among the scenarios. In particular, the number of drought months over South Korea is projected to increase (decrease) for the period 2041-2070 in the RCP8.5 (RCP4.5) scenario and increase (decrease) for the period 2071-2100 in the RCP4.5 (RCP8.5) scenario. In addition, the percentage area under any drought condition is overall projected to gradually decrease over South Korea during the entire future period, with the exception of SPI-1 in the RCP4.5 scenario. Particularly, the drought areas for SPI-1 in the RCP4.5 scenario show weakly positive long-term trend. Otherwise, future changes in drought areas for SPI-6 and SPI-12 have a marked downward trend under the two RCP scenarios.  相似文献   
746.
Precipitation changes over South Korea were projected using five regional climate models (RCMs) with a horizontal resolution of 12.5 km for the mid and late 21st century (2026-2050, 2076- 2100) under four Representative Concentration Pathways (RCP) scenarios against present precipitation (1981-2005). The simulation data of the Hadley Centre Global Environmental Model version 2 coupled with the Atmosphere-Ocean (HadGEM2-AO) was used as boundary data of RCMs. In general, the RCMs well simulated the spatial and seasonal variations of present precipitation compared with observation and HadGEM2-AO. Equal Weighted Averaging without Bias Correction (EWA_NBC) significantly reduced the model biases to some extent, but systematic biases in results still remained. However, the Weighted Averaging based on Taylor’s skill score (WEA_Tay) showed a good statistical correction in terms of the spatial and seasonal variations, the magnitude of precipitation amount, and the probability density. In the mid-21st century, the spatial and interannual variabilities of precipitation over South Korea are projected to increase regardless of the RCP scenarios and seasons. However, the changes in area-averaged seasonal precipitation are not significant due to mixed changing patterns depending on locations. Whereas, in the late 21st century, the precipitation is projected to increase proportionally to the changes of net radiative forcing. Under RCP8.5, WEA_Tay projects the precipitation to be increased by about +19.1, +20.5, +33.3% for annual, summer and winter precipitation at 1-5% significance levels, respectively. In addition, the probability of strong precipitation (≥ 15 mm d-1) is also projected to increase significantly, particularly in WEA_Tay under RCP8.5.  相似文献   
747.
In this study, we present the Parameter-elevation Relationships on Independent Slopes Model (PRISM)-based Dynamic downscaling Error correction (PRIDE) model, which is suitable for complex topographies, such as the Korean peninsula. The PRIDE model is constructed by combining the PRISM module, the Regional Climate Model (RCM) anomaly, and quantile mapping (QM) to produce high-resolution (1 km) grid data at a daily time scale. The results show that the systematic bias of the RCM was significantly reduced by simply substituting the climatological observational seasonal cycle at a daily timescale for each grid point obtained from the PRISM. QM was then applied to correct additional systematic bias by constructing the transfer functions under the cumulative density function framework between the model and observation using six types of transfer functions. K-fold cross-validation of the PRIDE model shows that the number of modeled precipitation days is approximately 90~121% of the number of observed precipitation days for the five daily precipitation classes, indicating that the PRIDE model reasonably estimates the observational frequency of daily precipitation under a quantile framework. The relative Mean Absolute Error (MAE) is also discussed in the framework of the intensity of daily precipitation.  相似文献   
748.
749.
750.
The intertidal seagrass Zostera japonica, which is distributed in the intertidal and shallow subtidal zones, is exposed to nutrients from over-enriched land-based discharge and storm water runoff before they can be washed out to sea. Despite its ecological importance, only a few studies have examined the ecology and physiology of Z. japonica in northeast Asia. In this study, we investigated the productivity and tissue nutrient contents of above- and below-ground tissues to evaluate the potential role of Z. japonica in carbon capture and as a nutrient sink. The average total, above-, and below-ground productivity per shoot was 0.56, 0.34, and 0.21 mg DW shoot-1 day-1, respectively. Annual leaf production was 1.5 times higher than annual below-ground production. Estimated annual whole-plant carbon, nitrogen, and phosphorus incorporation based on shoot production and tissue nutrient contents was 312.8 g C m-2 y-1, 25.7 g N m-2 y-1, and 1.6 g P m-2 y-1, respectively. These values were equivalent to 7.8 × 103 kg C y-1, 6.4 × 102 kg N y-1, and 40 kg P y-1 for all Z. japonica beds in Geoje Bay. This suggests that Z. japonica meadows can incorporate a considerable amount of carbon, nitrogen, and phosphorus in the intertidal zone. High N:P ratios of above- and below-ground tissues suggest that Z. japonica growth is probably limited by phosphorus availability in the study area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号