首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   411篇
  免费   44篇
  国内免费   33篇
测绘学   8篇
大气科学   22篇
地球物理   111篇
地质学   262篇
海洋学   17篇
天文学   18篇
综合类   28篇
自然地理   22篇
  2023年   8篇
  2022年   19篇
  2021年   43篇
  2020年   32篇
  2019年   25篇
  2018年   78篇
  2017年   40篇
  2016年   60篇
  2015年   36篇
  2014年   28篇
  2013年   38篇
  2012年   13篇
  2011年   19篇
  2010年   6篇
  2009年   12篇
  2008年   7篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1986年   1篇
排序方式: 共有488条查询结果,搜索用时 15 毫秒
451.
The Zakharov-Kuznetsov (ZK) equation is derived for electrostatic wave in a rotating magnetoplasma with anisotropic ion pressure and in the presence of stationary charged dust particles. The anisotropic ion pressure is defined using double adiabatic Chew-Golberger-Low (CGL) theory. The reductive perturbation method is employed to study the dynamics of obliquely propagating low frequency ion acoustic wave with adiabatic ions. It is found that the ion pressure anisotropy, polarity, density of the dust particles and rotational frequency have significant effects on the formation nonlinear structures in rotating magnetized dusty plasmas. The numerical results are also presented for illustration.  相似文献   
452.
GeoJournal - Assessing land use/cover (LULC) change in coastal lakes is an essential process for sustainable development. Edku Lake is one of the most important lakes in the northern part of Nile...  相似文献   
453.
GeoJournal - Maize is one of the potential crops can help in regional food production with self-sufficiency of foods in the drought prone areas of East Java in Indonesia. The purpose of this...  相似文献   
454.
Atif  Salman  Umar  Muhammad  Ullah  Fahim 《Natural Hazards》2021,108(2):2357-2383

While historically significant for ancient civilizations, the Indus basin is also known for its floods and complex anthropogenic management history. Resulting from years of modifications by the pre-British era Mughal rulers followed by the post-partition division of river waters among the two neighbors, India and Pakistan, Pakistan faces severe management and financial challenges of water management. This study investigates the intricacies arising from this complicated management doctrine for the lower Indus basin. A detailed remote sensing-based analysis of the significant floods to hit the lower Indus basin since 2000 has been provided. Flood years were identified, and Moderate Resolution Imaging Spectroradiometer (MODIS) data for the years 2003, 2005, 2006, 2010, 2011, 2012, 2015, and 2016 were used to map their spatiotemporal extents. Almost all the flood water accumulated in the north is released in one river channel of the lower Indus basin. Further, the challenges were exacerbated due to the excessive rainfall in 2011 and 2012 in southeastern Sindh. A trend analysis of rainfall data shows an increase in the southern basin in the last 21 years, particularly toward the central plains and Sindh Province. The floodwater accumulated in the lower basin for as many as?~?425 days on average, stretching to?~?800 days of stagnancy in some places. The water stagnation period has been the highest in the river floodplain, highly populated and cultivated. The analyses of the current study suggest that the riverine channel has been better managed after the 2010 floods; however, the monsoon’s shift in 2011 and 2012 led to widespread disaster in low-lying regions of Sindh Province.

  相似文献   
455.
This article presents probabilistic seismic hazard analyses of northern Pakistan region carried out to produce macro-seismic hazard maps for the region that define new regional ground motion design parameters for 95-, 475-, 975- and 2475-year return period earthquakes as regional contour maps and horizontal uniform hazard at important cities. The Cornell–McGuire approach (Cornell in Bull Seismol Soc Am 58(05):1583–1606, 1968; McGuire in FORTRAN computer program for seismic risk analysis. US Geological Survey, Open file Report, 76-6768, 1976) is used to carry out the analyses at 0.1° rectangular grid. The seismotectonic model of the region used in analysis consists of shallow and deep area zones differentiated based on the focal depths of the earthquakes. Earthquake catalogue compiled and used in the analysis is a composite catalogue composed of 19,373 events. Ground motion prediction equations (GMPEs) used are calibrated using goodness-of-fitness measures and visual inspection with local strong motion data. Epistemic uncertainty in the GMPEs is taken into account through the logic tree approach. Comparison of ground motions due to deep earthquakes is made for the first time for the region. The comparison between ground motion due to shallow and deep earthquakes indicates that the seismic hazard would be underestimated if the deep earthquakes are excluded. Ground motion values obtained in this study considering all the earthquakes suggest ground motions are dominant towards the north east of the region. The proposed study indicates that the ground motion hazard values suggested by the current Building Code of Pakistan underestimate the seismic hazard. Final results of this study are in close agreement with the recent studies on the region.  相似文献   
456.
Detailed facies analysis of the Neogene successions of the Pishin Belt (Katawaz Basin) has enabled documentation of successive depositional systems and paleogeographic settings of the basin formed by the collision of the northwestern continental margin of the Indian Plate and the Afghan Block. During the Early Miocene, subaerial sedimentation started after the final closure of the Katawaz Remnant Ocean. Based on detailed field data, twelve facies were recognized in Neogene successions exposed in the Pishin Belt. These facies were further organized into four facies associations i.e. channels, crevasse splay, natural levee and floodplain facies associations. Facies associations and variations provided ample evidence to recognize a number of fluvial architectural components in the succession e.g., low‐sinuosity sandy braided river, mixed‐load meandering, high‐sinuosity meandering channels, single‐story sandstone and/or conglomerate channels, lateral accretion surfaces (point bars) and alluvial fans. Neogene sedimentation in the Pishin Belt was mainly controlled by active tectonism and thrusting in response to the oblique collision of the Indian Plate with the Afghan Block of the Eurasian Plate along the Chaman‐Nushki Fault. Post Miocene deformation of these formations successively caused them to contribute as an additional source terrain for the younger formations.  相似文献   
457.
This paper encompasses the engineering geological properties of rock mass along the power tunnel of hydropower in Kohistan, Khayber Pakhtun Khawa (KPK), Pakistan. The major geological units of the study area are Chilas complex (CC) and Gilgit complex (GC) that consists mostly of igneous and metamorphic rocks. Discontinuity surveys were conducted to classify the rock mass by utilizing rock mass rating (RMR) and tunneling quality index (Q) classification systems. RMR system involves collection of data for parameters of rock strength, RQD, spacing of discontinuities, condition of discontinuities, groundwater condition and Q system involves rock quality designation (RQD), joint roughness (Jr), joint sets (Js), joint alteration (Ja), stress reduction factor (SRF) and joint water reduction (Jw). RMR values ranges from 46 to 66 (fair to good) for rock unit of Chilas complex (CC) and 50 to 58 (fair) for rock unit of Gilgit complex (GC). The evaluated values of tunnel quality by Q-system are 1.55 to 6.4 (poor to fair) for Chilas complex (CC) and 1.35 to 1.84 (poor) for Gilgit complex (GC). The required support along the tunnel route is also estimated by both classification systems. Unwedge program is used to analyze the unstable zones due to the intersection of different joint sets. Total 14 cases are analyzed in Unwedge from which 3 cases have failure potential with FOS less than 1. These failure potential blocks can become stable by applying further support of rock bolting and shotcrete layer.  相似文献   
458.
459.
The examination of past and new chemical–isotopic data (2H/1H–18O/16O, 11B/10B and 87Sr/86Sr ratios) shows the meteoric origin of the Sawa Lake (Muthanna Governorate, Iraq) and its connection with the local aquifers, which feed the lake via the groundwater emerging from its floor through fault systems. The chemical and isotopic evaporation models are traced by geochemical computer codes by using a different composition of some potential inflows to the lake (e.g., the Euphrates River and Dammam aquifer). The main product of the chemical evaporation models is gypsum, as confirmed by the mineralogical examination of the sediment and the surrounding outcrops. A strong 18O–2H enrichment is a consequence of the evaporation effect in arid regions; δ18O–Cl models and δ11B?=?+?23.4‰ exclude the contribution of any seawater-derived fluids. This latter value along with 87Sr/86Sr?=?0.707989 suggests a mixed origin from the Eocene–Miocene aquifers. The isotope and chemical evaporation paths from the meteorically recharged sources match the lake composition. However, compositional switches from NaCl toward MgCl2 occurred in the last decade and are related to post-drought periods, showing that the interaction of the recharging waters with the local soils (Na–Mg exchange and/or the leaching of the top layer salts) have a role in the chemical composition. This demonstrates that the lake is significantly influenced by climatic variations.  相似文献   
460.
Landslides are recurring phenomena causing damages to private property, public facilities, and human lives. The need for an affordable instrumentation that can be used to provide an early warning of slope instability to enable the evacuation of vulnerable people, and timely repair and maintenance of critical infrastructure is self-evident. A new emerging technique that correlates soil moisture changes and deformations in slope surface by means of elastic wave propagation in soil was developed. This approach quantifies elastic wave propagation as wave velocity. To verify its applicability, a series of fixed and varied slope model tests, as well as a large scale model test, were conducted. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation, and there was a distinct surge in the decrease rate of wave velocity with failure initiation, soil deformation was thus envisaged to have more significant effect on elastic wave velocity than water content. It is proposed that a warning be issued at switch of wave velocity decrease rate. Based on these observations, expected operation of the elastic wave velocity monitoring system for landslide prediction in the field application is presented. Consequently, we conclude that the elastic wave velocity monitoring technique has the potential to contribute to landslide prediction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号