首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5798篇
  免费   227篇
  国内免费   25篇
测绘学   198篇
大气科学   398篇
地球物理   2208篇
地质学   1957篇
海洋学   227篇
天文学   831篇
综合类   32篇
自然地理   199篇
  2022年   46篇
  2021年   109篇
  2020年   111篇
  2019年   81篇
  2018年   261篇
  2017年   242篇
  2016年   362篇
  2015年   270篇
  2014年   279篇
  2013年   363篇
  2012年   316篇
  2011年   259篇
  2010年   251篇
  2009年   266篇
  2008年   206篇
  2007年   148篇
  2006年   150篇
  2005年   126篇
  2004年   116篇
  2003年   123篇
  2002年   91篇
  2001年   96篇
  2000年   95篇
  1999年   56篇
  1998年   88篇
  1997年   69篇
  1996年   43篇
  1995年   72篇
  1994年   86篇
  1993年   51篇
  1992年   46篇
  1991年   43篇
  1990年   58篇
  1989年   44篇
  1988年   43篇
  1987年   38篇
  1986年   43篇
  1985年   45篇
  1984年   38篇
  1983年   46篇
  1982年   50篇
  1981年   42篇
  1980年   44篇
  1979年   40篇
  1978年   50篇
  1977年   42篇
  1975年   40篇
  1974年   31篇
  1973年   43篇
  1971年   39篇
排序方式: 共有6050条查询结果,搜索用时 15 毫秒
71.
72.
Three different reconstructed wind-stress fields which take into account variations of the North Atlantic Oscillation, one general circulation model wind-stress field, and three radiative forcings (volcanic activity, insolation changes and greenhouse gas changes) are used with the UVic Earth System Climate Model to simulate the surface air temperature, the sea-ice cover, and the Atlantic meridional overturning circulation (AMOC) since 1500, a period which includes the Little Ice Age (LIA). The simulated Northern Hemisphere surface air temperature, used for model validation, agrees well with several temperature reconstructions. The simulated sea-ice cover in each hemisphere responds quite differently to the forcings. In the Northern Hemisphere, the simulated sea-ice area and volume during the LIA are larger than the present-day area and volume. The wind-driven changes in sea-ice area are about twice as large as those due to thermodynamic (i.e., radiative) forcing. For the sea-ice volume, changes due to wind forcing and thermodynamics are of similar magnitude. Before 1850, the simulations suggest that volcanic activity was mainly responsible for the thermodynamically produced area and volume changes, while after 1900 the slow greenhouse gas increase was the main driver of the sea-ice changes. Changes in insolation have a small effect on the sea ice throughout the integration period. The export of the thicker sea ice during the LIA has no significant effect on the maximum strength of the AMOC. A more important process in altering the maximum strength of the AMOC and the sea-ice thickness is the wind-driven northward ocean heat transport. In the Southern Hemisphere, there are no visible long-term trends in the simulated sea-ice area or volume since 1500. The wind-driven changes are roughly four times larger than those due to radiative forcing. Prior to 1800, all the radiative forcings could have contributed to the thermodynamically driven changes in area and volume. In the 1800s the volcanic forcing was dominant, and during the first part of the 1900s both the insolation changes and the greenhouse gas forcing are responsible for thermodynamically produced changes. Finally, in the latter part of the 1900s the greenhouse gas forcing is the dominant factor in determining the sea-ice changes in the Southern Hemisphere.
Jan SedláčekEmail:
  相似文献   
73.
The Tombador Formation exhibits depositional sequence boundaries placed at the base of extensive amalgamated fluvial sand sheets or at the base of alluvial fan conglomeratic successions that indicate basinward shifts of facies. The hierarchy system that applies to the Tombador Formation includes sequences of different orders, which are defined as follows: sequences associated with a particular tectonic setting are designated as ‘first order’ and are separated by first‐order sequence boundaries where changes in the tectonic setting are recorded; second‐order sequences represent the major subdivisions of a first‐order sequence and reflect cycles of change in stratal stacking pattern observed at 102 m scales (i.e., 200–300 m); changes in stratal stacking pattern at 101 m scales indicate third‐order sequences (i.e., 40–70 m); and changes in stratal stacking pattern at 100 m scales are assigned to the fourth order (i.e., 8–12 m). Changes in palaeogeography due to relative sea level changes are recorded at all hierarchical levels, with a magnitude that increases with the hierarchical rank. Thus, the Tombador Formation corresponds to one‐first‐order sequence, representing a distinct intracratonic sag basin fill in the polycyclic history of the Espinhaço Supergroup in Chapada Diamantina Basin. An angular unconformity separates fluvial‐estuarine to alluvial fan deposits and marks the second‐order boundary. Below the angular unconformity the third‐order sequences record fluvial to estuarine deposition. In contrast, above the angular unconformity these sequences exhibit continental alluvial successions composed conglomerates overlain by fluvial and eolian strata. Fourth‐order sequences are recognized within third‐order transgressive systems tract, and they exhibit distinct facies associations depending on their occurrence at estuarine or fluvial domains. At the estuarine domain, they are composed of tidal channel, tidal bar and overlying shoreface heterolithic strata. At the fluvial domain the sequences are formed of fluvial deposits bounded by fine‐grained or tidal influenced intervals. Fine grained intervals are the most reliable to map in fourth‐order sequences because of their broad laterally extensive sheet‐like external geometry. Therefore, they constitute fourth‐order sequence boundaries that, at the reservoir approach, constitute the most important horizontal heterogeneity and, hence, the preferable boundaries of production zones. The criteria applied to assign sequence hierarchies in the Tombador Formation are based on rock attributes, are easy to apply, and can be used as a baseline for the study of sequence stratigraphy in Precambrian and Phanerozoic basins placed in similar tectonic settings.  相似文献   
74.
A case study is presented to assess the relevance of geomorphology in hydrogeological phenomena in an arid coastal area in the Argentinean extra-Andean Patagonia (Península Valdés) with an average rainfall of 232 mm/year and a soil moisture deficit of about 472 mm/year. Various geomorphic units were identified by interpreting Landsat 7 satellite images processed with ER Mapper software and then surveyed in the field, as well as by geological characterization. The hydrodynamic analysis was based on a survey of 89 wells, the construction of equipotential maps, and the interpretation of pumping-test results by a non-equilibrium method. The hydrochemical characterization was based on chemical tests analyzed with the Easy_Quim 6.0 application. The combination of geomorphological, geological, hydrodynamic and hydrochemical elements allowed the definition of hydromorphological units that are typical of recharge, circulation and discharge areas, the latter both for coastal and inland areas in wetlands (salt pans) with elevations to ?40 m relative to sea level. These units and the criteria used for their definition allow immediate recognition of hydrogeological phenomena in arid regions such as the extra-Andean Patagonia, with low information density but with near-optimal satellite imaging of landforms due to the lack of vegetation cover.  相似文献   
75.
Mineralogy and Petrology - Potassic-richterite, ideally AKB(NaCa)CMg5TSi8O22W(OH)2, is recognized as a valid member of the amphibole supergroup (IMA-CNMNC 2017–102). Type material is from the...  相似文献   
76.
77.
Summary The time distribution of earthquake occurrence in the European area is investigated by statistical laws. The original data of shallow-focus earthquakes are taken from the European catalogue 1901–1967. Evidence is given that the process with the negative binomial entries as a model describing the occurrence of shallow-focus earthquakes is better than the Poisson process. Further, the influence of magnitude classes and magnitude threshold value on the time distribution of earthquake occurrence is examined.Communication presented at the XIII General Assembly of the European Seismological Commission in Brasov in 1972.  相似文献   
78.
There is general agreement that calc-alkaline volcanic rocks at convergent plate margins are genetically related to the process of subduction (Ringwood, 1974; Maaloe and Petersen, 1981; Hawkesworth et al., 1997). However, opinions on the mode and site of generation of primary magma for island arc volcanism differ substantially. The site of generation of calc-alkaline magma is thought to be either in the mantle wedge (Plank and Langmuir, 1988; McCulloch and Gamble, 1991) or in the subducting slab (White and Dupré, 1986; Defant and Drummond, 1990; Edwards et al., 1993; Ryan and Langmuir, 1993). We present seismological evidence in favour of the latter concept. A distinctive seismicity pattern around and under the Krakatau volcano was identified during systematic studies of the SE Asian convergent plate margins by means of global seismological data. A column-like cluster of events, probably associated with the dynamics of the volcano, is clearly separated from the events in the Wadati-Benioff zone. The accuracy of hypocentral determinations of the events of the cluster does not differ from the accuracy of the events belonging to the subducting slab. The depths of the cluster events vary from very shallow to about 100 km without any apparent discontinuity. On the other hand, there is a pronounced aseismic gap in the Wadati-Benioff zone directly beneath the volcano at depths between 100-150 km. The Krakatau cluster connects this aseismic gap to the volcano at the surface. The pervasive occurrence of earthquakes in the continental wedge between the subducting slab and the Earth surface bears witness to the brittle character of the continental lithosphere and casts doubt on the existence of large-scale melting of mantle material. The aseismic gap (Hanu and Vank, 1985), interpreted by us as a partially melted domain occurring in subducted slabs in practically all active subduction zones that reach depths greater than 100 km, is here used as evidence for the location of the primary source region of island arc volcanics in the subducting plate.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号