首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   531篇
  免费   23篇
  国内免费   2篇
测绘学   36篇
大气科学   44篇
地球物理   155篇
地质学   162篇
海洋学   31篇
天文学   85篇
综合类   3篇
自然地理   40篇
  2023年   3篇
  2022年   7篇
  2021年   18篇
  2020年   9篇
  2019年   14篇
  2018年   26篇
  2017年   23篇
  2016年   22篇
  2015年   25篇
  2014年   25篇
  2013年   32篇
  2012年   20篇
  2011年   26篇
  2010年   23篇
  2009年   31篇
  2008年   25篇
  2007年   27篇
  2006年   30篇
  2005年   17篇
  2004年   18篇
  2003年   8篇
  2002年   19篇
  2001年   11篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1986年   3篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1976年   4篇
  1975年   4篇
  1974年   2篇
  1971年   4篇
  1967年   3篇
  1966年   2篇
  1965年   2篇
  1963年   3篇
  1962年   3篇
  1959年   2篇
  1958年   2篇
  1957年   2篇
排序方式: 共有556条查询结果,搜索用时 15 毫秒
51.
Flood Events in the Rhine Basin: Genesis,Influences and Mitigation   总被引:4,自引:1,他引:4  
Disse  Markus  Engel  Heinz 《Natural Hazards》2001,23(2-3):271-290
The paper analyses the hydrological regime of the Rhine catchment,the genesis of recent floods,and recommends some research and practical activities to mitigate flood damage. The catchment of the Rhine River can be divided into four main subcatchments: the alpine region with the Aare River as its main tributary and downstream the lower mountain regions of the tributaries Neckar, Main and Moselle. These four basins generate very different hydrographs. Due to the geographical conditions, the average discharge maximums shift from summer to winter downstream the Rhine. Moreover, the spatial and temporalprecipitation patterns of each river have a strong influence on the individual flood events. Some recent extraordinary floods are used to illustrate the parameters that have influenced these events.A strong relationship between recent climate change observationsand the occurrence of flood levels cannot be proven. However, the consequences of human interventions and the resulting changes to the river system (the Rhine and its tributaries) for the hydrograph can be quantified precisely.The influences of different land-use and climatic scenarios on flood conditions in the Rhine basin have not yet been separately identified. Thus, the Dutch-German project LAHoR was established. The primary aim of this project is to giveadvice for the ``Action Plan on Flood Defence' of the International Commission for the Protection of the Rhine (IKSR). In this plan a multidisciplinary approach to mitigating floods is suggested.It is anticipated that the plan willgenerate synergistic effects between flood prevention, water management, regional planning, agriculture, forestry and ecological demands.  相似文献   
52.
Summary By means of the long-period records at Uppsala and Kiruna of thirteen specially selected earthquakes, the Love and Rayleigh wave dispersion is determined for all oceans and all continents except for South America. The observations have given information on crustal structure along several paths, not investigated earlier; in other cases, they have confirmed earlier results. The methods are discussed. The results for oceanic areas are summarized in the following table: The observations demonstrate the oceanic structure of the central Arctic area as well as the complete similarity of the Atlantic and Pacific bottom structure. Continental dispersion curves are determined for very long paths over Euro-Asia and for the hitherto longest path over North America as well as for a path crossing Africa. These observations indicate an average crust about 10–15 km thicker along the Euro-Asiatic path than along the North American path, whereas there is perfect agreement between the North American and the African continent. A shear-wave velocity of 4.3–4.4 km/sec is obtained for the upper part of the mantle under the continents. Further conclusions must await the computation of a greater number of theoretical dispersion curves.
Zusammenfassung Mittels der langperiodischen Registrierungen in Uppsala und Kiruna von dreizehn speziell ausgewählten Erdbeben ist die Dispersion der Love-und Rayleigh-Wellen für alle Ozeane und alle Kontinente mit Ausnahme von Süd-Amerika bestimmt worden. Die Beobachtungen haben in mehreren Fällen Auskunft über die Krusten-Struktur längs Wellenwege gegeben, die nie früher untersucht worden sind; in anderen Fällen haben sie frühere Resultate bestätigt. Die Methoden werden diskutiert. Die Resultate für ozeanische Gebiete sind in der folgenden Tabelle zusammengefasst: Die Beobachtungen beweisen sowohl die ozeanische Struktur des zentralen Teiles des arktischen Gebietes als auch die vollständige Gleichheit der atlantischen und pazifischen Krusten-Struktur. Kontinentale Dispersionskurven sind für sehr lange Wellenwege über Euro-Asien und für den bisher längsten Wellenweg über Nord-Amerika bestimmt worden. Diese Beobachtungen zeigen, dass die mittlere Krusten-Dicke 10–15 km grösser längs des euro-asiatischen Weges ist als längs des nordamerikanischen Weges; dagegen zeigen die Beobachtungen für Nord-Amerika und Afrika sehr gute Übereinstimmung. Eine Transversalwellen-Geschwindigkeit von 4.3–4.4 km/sek wird für den oberen Teil des Erdmantels unter den Kontinenten gefunden. Weitere Schlussfolgerungen müssen die Berechnung einer grösseren Anzahl theoretischer Dispersionskurven erwarten.
  相似文献   
53.
Summary If for a point on the earth's surface, the apparent (moveout) seismic velocities have been determined for a number of profiles in different directions, a possibility is offered to calculate true strike and dip of crustal boundaries. In the present paper the theory is developed, partly for a sloping Mohorovii discontinuity only, partly for sloping Conrad and Mohorovii discontinuities with parallel strikes. The theory for the sloping Mohorovii discontinuity is applied to field measurements at a place about 30 km west of Uppsala performed in June 1969. With a crustalP-wave velocity of 6.3 km/sec, a good fit to the observations is obtained for aPn-velocity of 8.55 km/sec and a downdip of Moho of 7.2° in the direction S 3.8° E. These numerical values are not the most important output of this paper. On the other hand, the testing of the method appears far more important, and also that improvements can be suggested in the experimental procedure in future applications of this method.  相似文献   
54.
ABSTRACT

Groundwater level fluctuations are caused by spatial and temporal superposition of processes within and outside the aquifer system. Most of the subsurface processes are usually observed on a small scale. Upscaling to the regional scale, as required for future climate change scenarios, is difficult due to data scarcity and increasing complexity. In contrast to the limited availability of system characteristics, high-resolution data records of groundwater hydrographs are more generally available. Exploiting the information contained in these records should thus be a priority for analysis of the chronical lack of data describing groundwater system characteristics. This study analyses the applicability of 63 indices derived from daily hydrographs to quantify different dynamics of groundwater levels in unconfined gravel aquifers from three groundwater regions (Bavaria, Germany). Based on the results of two different skill tests, the study aids index selection for different dynamic components of groundwater hydrographs.  相似文献   
55.
56.
Sediments attributed to flooding events of River Danube concerning the bleaching of the optical stimulated luminescence (OSL) signal were investigated. It is demonstrated that the OSL signal in both quartz and feldspar is not completely but differentially bleached in the sediment grains. Partial bleaching of the samples is clearly indicated by the scatter of equivalent dose determined for several individual single aliquots. It is also shown that residual ages in feldspars are significantly higher than those calculated for quartz. It is furthermore demonstrated that analysing measurement-time dependent equivalent dose estimates is not a suitable method to identify partial bleaching in the investigated sediment grains. However, the transport and deposition process of the investigated samples was probably disturbed by an artificial input of sediment, and this case study may thus not be representative of undisturbed high flood events in the past.  相似文献   
57.
Crustal extension in the overriding plate at the Aegean subduction zone, related to the rollback of the subducting African slab in the Miocene, resulted in a detachment fault separating high‐pressure/low‐temperature (HP‐LT) metamorphic lower from non‐metamorphic upper tectonic units on Crete. In western Crete, detachment faulting at deeper crustal levels was accompanied by structural disintegration of the hangingwall leading to the formation of half‐graben‐type sedimentary basins filled by alluvial fan and fan‐delta deposits. The coarse‐grained clastic sediments in these half‐grabens are exclusively derived from the non‐metamorphic units atop the detachment fault. Being in direct tectonic contact with HP‐LT metamorphic rocks of the lower tectonic units today, the basins must have formed in the period between c. 20 and 15 Ma, prior to the exposure of the HP‐LT metamorphic rocks at the surface, and juxtaposed with the latter during ongoing deformation.  相似文献   
58.
59.
Past heavy precipitation events in the Chicago metropolitan area have caused significant flood-related economic and environmental damages. A key component in flood management policies and actions is determining flood magnitudes for specified return periods. This is a particularly difficult task in areas with a complex and changing climate and land-use, such as the Chicago metropolitan area. The standard design storm methodology based on the NOAA Atlas 14 and ISWS Bulletin 70 has been used in the past to estimate flood hydrographs with variable return periods in this region. In a changing climate, however, these publications may not be accurate. This study presents and illustrates a methodology for diagnostic analysis of future climate scenarios in the framework of urban flooding, and assesses the corresponding uncertainties. First, the design storms are calculated using data downscaled by a regional climate model (RCM) at 30-km spacing for the present and 2050s under the IPCC A1Fi (high) and B1 (low) emissions scenarios. Next, the corresponding flood discharges at six watersheds in suburban Chicago are estimated using a hydrologic event model. The resulting scenarios in flood frequency were first assessed through a set of diagnostic tests for precipitation timing and frequency. The study did not reveal any significant changes in the 2050s in the average timing of heavy storms, but their regularity decreased. The average timing did not exhibit any significant spatial variability throughout the region. The precipitation frequency analysis revealed distinct differences between the northern and southeastern subregions of the Chicago metropolitan area. The quantiles in the northern subregion averaged for 2-year, 5-year, and 10-year return periods exhibited a 20% and 16% increase in daily precipitation for scenarios B1 and A1Fi, respectively. The southeastern subregion, however, exhibited a decrease of 12% for scenario B1 and a minor increase of 3% for scenario A1Fi. The hydrologic effects of changing precipitation on the flood quantiles were illustrated using six small watersheds in the region. The relative increases or decreases in precipitation translated into even larger relative increases or decreases in flood peaks, due to the nonlinear nature of the rainfall-runoff process. Simulations using multiple climate models, for longer periods, finer spatio-temporal resolution, and larger areal coverage could be used to more accurately account for numerous uncertainties in the precipitation and flood projections.  相似文献   
60.
Large wood tends to be deposited in specific geomorphic units within rivers. Nevertheless, predicting the spatial distribution of wood deposits once wood enters a river is still difficult because of the inherent complexity of its dynamics. In addition, the lack of long‐term observations or monitored sites has usually resulted in a rather incomplete understanding of the main factors controlling wood deposition under natural conditions. In this study, the deposition of large wood was investigated in the Czarny Dunajec River, Polish Carpathians, by linking numerical modelling and field observations so as to identify the main factors influencing wood retention in rivers. Results show that wood retention capacity is higher in unmanaged multi‐thread channels than in channelized, single‐thread reaches. We also identify preferential sites for wood deposition based on the probability of deposition under different flood scenarios, and observe different deposition patterns depending on the geomorphic configuration of the study reach. In addition, results indicate that wood is not always deposited in the geomorphic units with the highest roughness, except for low‐magnitude floods. We conclude that wood deposition is controlled by flood magnitude and the elevation of flooded surfaces in relation to the low‐flow water surface. In that sense, the elevation at which wood is deposited in rivers will differ between floods of different magnitude. Therefore, together with the morphology, flood magnitude represents the most significant control on wood deposition in mountain rivers wider than the height of riparian trees. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号