首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   13篇
  国内免费   1篇
测绘学   4篇
大气科学   11篇
地球物理   111篇
地质学   140篇
海洋学   37篇
天文学   30篇
综合类   1篇
自然地理   17篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   7篇
  2019年   5篇
  2018年   17篇
  2017年   20篇
  2016年   17篇
  2015年   23篇
  2014年   20篇
  2013年   19篇
  2012年   22篇
  2011年   22篇
  2010年   26篇
  2009年   18篇
  2008年   31篇
  2007年   20篇
  2006年   4篇
  2005年   15篇
  2004年   7篇
  2003年   10篇
  2002年   7篇
  2001年   4篇
  2000年   10篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有351条查询结果,搜索用时 15 毫秒
11.
NOAA 8210 has been a region showing a remarkable level of activity well before solar maximum. Dominated by a large, rapidly rotating spot, it produced several intense flares during its disk passage at the end of April–beginning of May 1998. We examine the development of AR 8210 in H and white light (WL) and study the evolution of its complex magnetic topology. While the other principal flares are briefly reviewed, the great X1.1/3B flare of 2 May, which was observed at Kanzelhöhe Solar Observatory during a SOHO/UVCS ground support campaign, is studied in detail. This event has been documented in full-disk H and Na-D intensitygrams, Dopplergrams, and magnetograms, with a time cadence of one minute each. The flare was associated with a CME and produced significant geomagnetic effects. Furthermore, we point out the perspectives for our planned Flare Monitoring and Alerting System, since the two new instruments (Magneto-Optical Filter and Digital H camera), which made their first operational run with the campaign, are crucial components for this program.  相似文献   
12.
In foreland thrust belts, abrupt lateral changes in tectonic style, structural–stratigraphic features, and topography usually occur across cross-strike faults. The Central Apennines of Italy offer an exceptional scenario of lateral variations in tectonic setting. Here, the Sangro Volturno oblique thrust ramp (SVOTR) represents the outer thrust front of the Pliocene–Quaternary foreland thrust system, confining southward the axial culmination of the orogen that occurs in the Central Apennines. We present an interpretation of the Pliocene–Quaternary evolution of this cross-strike fault through an integrated dataset including structural-geological mapping and subsurface onshore seismic reflection profiles. The interpretation of the structural framework is augmented by the analysis of low-temperature thermochronometers from 32 new sites extending across the subsurface transverse structure. As evidenced by seismic line interpretation, the localization and development of the SVOTR have been influenced by inherited extensional faults within a positive inversion tectonics context. The regional distribution of the maximum paleotemperature values across the SVOTR constrains the original extent of the allochthonous thrust sheet over all its hanging-wall and footwall blocks. The Pliocene–Quaternary thrusting and inversion of SVOTR caused the strong hanging-wall uplift, which brought to the complete erosion of the allochthonous units and the exhumation of the Adria units. The integrated analysis of low-temperature thermochronometers and structural evidence as applied in the study case can define the role of major cross-strike discontinuities in foreland thrust belts, by constraining and verifying their tectonics inversion significance and the amount of related exhumation.  相似文献   
13.
14.
A major tsunamigenic earthquake is expected in the near future along the coast of West Sumatra Province of Indonesia. In the city of Padang, the arrival time of the tsunami is expected to be ~30 min. Currently, there are approximately 400,000 people in the city living within the potential inundation zone. This study aimed to complement the existing research in appraising possible risk reduction interventions, specifically looking at enabling the timely evacuation of the area. This research, developed in consultation with national and local authorities, emergency planners and NGOs, analysed interventions for tsunami risk reduction in Padang through the development of a pedestrian and vehicular evacuation model and the appraisal of possible solutions to enhance the evacuation rates. Some of the conclusions from this research can be applied to other areas in Southeast Asia where the traffic patterns are similar to those in Padang and where the distance to safety is greater than 4–5 km. For the case of Padang, the results show that pedestrian evacuation is strongly preferable to vehicular evacuation due to the limited road capacity and the high population density. In the present situation, however, 70–80 % of the population in Padang could not evacuate within 30 min, even by foot. Common interventions such as widening roads and building bridges prove to be relatively ineffective in this case due to the large distance that has to be covered in a short time. These interventions would only have a decisive impact if a longer evacuation time was available (more than 60 min). In the case of Padang, the evacuation rate in the first 30 min is strongly dependent on the presence/absence of evacuation shelters, whose effectiveness is limited by the capacity of the structures. Building a few high-capacity and high-resilience structures such as evacuation hills is a more effective and robust evacuation strategy than constructing many small high-raised buildings. Even with evacuation structures, wider roads and bridges, about 20 % of the population would still be unable to reach safety by the time the tsunami arrives. This means about 70,000 people of Padang’s current population, which is rapidly increasing. The building of evacuation shelters may be a viable option for saving lives in the short term, but it is not a sustainable option in the medium to long term. It is therefore also necessary to set up and enforce regulations for land use planning that take into account the tsunami risk and prevent further urban development for the areas that may be affected by a tsunami.  相似文献   
15.
Crystal-rich materials (scoriae and lava flows) emitted during the 1985–2000 activity of Stromboli were taken into consideration for systematic study of bulk rock/matrix glass chemistry and in particular for the study of chemical and textural zoning of plagioclase, the most abundant mineral phase. Over the considered time period, bulk rock composition remained fairly constant in both major (SiO2 49.2–50.9 wt% and K2O 1.96–2.18 wt%) and trace elements. The quite constant chemistry of matrix glasses also indicates that the degree of crystallization of magma was maintained at around 50 vol%. Plagioclase ranges in composition between An62 and An88 and is characterized by alternating, <10–100 m thick, bytownitic and labradoritic concentric layers, although the dominant and representative plagioclase of scoriae is An68. The labradoritic layers (An62–70) show small-scale (1–5 µm), oscillatory zoning, are free of inclusions, and appear to record episodes of slow crystal growth in equilibrium with a degassed liquid having the composition of the matrix glass. In contrast the bytownitic layers (An70-An88) are patchy zoned, show sieve structure with abundant micrometric glass inclusions and voids, and are attributed to rapid crystal growth.A key to understanding the origin of bytownitic layers can be retrieved from the texture and composition of the coronas of plagioclase xenocrysts, inherited from crystal-rich magma, in nearly aphyric pumice which are erupted during more energetic events and represent a deep, volatile-rich, HK-basaltic magma. They show a continuum from fine-sieve to evident skeletal texture from the inner to the outer part of the corona associated with normal compositional zoning from An90 to An75. In the light of these observations, we propose that input of H2O-rich melt blobs, and their mixing with the residing magma, causes partial dissolution of the labradoritic layers followed by the growth of bytownitic composition whose sieve texture attests of rapid crystallization occurring under undercooling conditions mainly induced by degassing. As a whole, the zoning of plagioclase in the scoriae records successive and discrete intrusions of volatile-rich magma blobs, its degassing and mixing with the resident degassed magma at shallow level.Editorial responsibility: T.L. GroveAn erratum to this article can be found at  相似文献   
16.
17.
18.
19.
The impact of inclined faults on the hydrothermal field is assessed by adding simplified structural settings to synthetic models. This study is innovative in carrying out numerical simulations because it integrates the real 3-D nature of flow influenced by a fault in a porous medium, thereby providing a useful tool for complex geothermal modelling. The 3-D simulations for the coupled fluid flow and heat transport processes are based on the finite element method. In the model, one geological layer is dissected by a dipping fault. Sensitivity analyses are conducted to quantify the effects of the fault’s transmissivity on the fluid flow and thermal field. Different fault models are compared with a model where no fault is present to evaluate the effect of varying fault transmissivity. The results show that faults have a significant impact on the hydrothermal field. Varying either the fault zone width or the fault permeability will result in relevant differences in the pressure, velocity and temperature field. A linear relationship between fault zone width and fluid velocity is found, indicating that velocities increase with decreasing widths. The faults act as preferential pathways for advective heat transport in case of highly transmissive faults, whereas almost no fluid may be transported through poorly transmissive faults.  相似文献   
20.
The heterogeneity of facies at the scale of individual lithological levels controls, at a macroscopic scale, water flow and contaminant transport in porous sediments. In particular the presence of organized features such as permeable connected levels, has a significant effect on travel times and dispersion. Here, the effects of facies heterogeneity on flow and transport are studied for three blocks, whose volume is of the order of a cubic meter, dug from alluvial sediments from the Ticino valley (Italy). Using the results of numerical tracer experiments on these domains, the longitudinal dispersion coefficient is computed with an Eulerian approach based on the fit of the breakthrough curves with the analytical solution of the convective-dispersive transport equation. Moreover, the dispersion tensor is computed with a Lagrangian approach from the second order moments of particle distributions. Three types of connectivity indicators are tested: (1) connectivity function; (2) flow, transport and statistical connectivity; (3) original (intrinsic, normal and total) indicators of facies connectivity. The connectivity function provides the most complete information. Some of the transport and statistical connectivity indicators are correlated with dispersivity. The simultaneous analysis of the three indicators of facies connectivity emphasizes the fundamental geometrical features that control transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号