首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   8篇
  国内免费   1篇
测绘学   2篇
大气科学   20篇
地球物理   45篇
地质学   41篇
海洋学   11篇
天文学   26篇
自然地理   4篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   8篇
  2018年   3篇
  2017年   4篇
  2016年   12篇
  2015年   7篇
  2014年   14篇
  2013年   12篇
  2012年   11篇
  2011年   10篇
  2010年   11篇
  2009年   8篇
  2008年   8篇
  2007年   6篇
  2006年   5篇
  2005年   6篇
  2004年   6篇
  2003年   6篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
排序方式: 共有149条查询结果,搜索用时 0 毫秒
101.
This numerical modeling study (i) assesses the influence of the sediment erosion process on the sediment dynamics and subsequent morphological changes of a mixed-sediment environment, the macrotidal Seine estuary, when non-cohesive particles are dominant within bed mixtures (non-cohesive regime), and (ii) investigates respective contributions of bedload and suspended load in these dynamics. A three dimensional (3D) process-based morphodynamic model was set up and run under realistic forcings (including tide, waves, wind, and river discharge) during a 1-year period. Applying erosion homogeneously to bed sediment in the non-cohesive regime, i.e., average erosion parameters in the erosion law (especially the erodibility parameter, E0), leads to higher resuspension of fine sediment due to the presence of coarser fractions within mixtures, compared to the case of an independent treatment of erosion for each sediment class. This results in more pronounced horizontal sediment flux (two-fold increase for sand, +30% for mud) and erosion/deposition patterns (up to a two-fold increase in erosion over shoals, generally associated with some coarsening of bed sediment). Compared to observed bathymetric changes, more relevant erosion/deposition patterns are derived from the model when independent resuspension fluxes are considered in the non-cohesive regime. These results suggest that this kind of approach may be more relevant when local grain-size distributions become heterogeneous and multimodal for non-cohesive particles. Bedload transport appears to be a non-dominant but significant contributor to the sediment dynamics of the Seine Estuary mouth. The residual bedload flux represents, on average, between 17 and 38% of the suspended sand flux, its contribution generally increasing when bed sediment becomes coarser (can become dominant at specific locations). The average orientation of residual fluxes and erosion/deposition patterns caused by bedload generally follow those resulting from suspended sediment dynamics. Sediment mass budgets cumulated over the simulated year reveal a relative contribution of bedload to total mass budgets around 25% over large erosion areas of shoals, which can even become higher in sedimentation zones. However, bedload-induced dynamics can locally differ from the dynamics related to suspended load, resulting in specific residual transport, erosion/deposition patterns, and changes in seabed nature.  相似文献   
102.
Microporosity may account for a significant part of the total porosity of Cretaceous limestone reservoirs of the Middle East. In these microporous facies porosity is moderate to excellent (up to 35%) while permeability is poor to moderate (up to 190 mD). Micritic limestones also may form dense layers with very low porosity and permeability values.Micritic samples were collected from three fields of the Habshan and Mishrif Formations, to examine the spatial relationship with their porosity, permeability and pore throat radius distributions. Two key parameters of the micritic particles are studied using scanning electron microscopy: their morphology (shape and inter-crystal contacts), and their crystallometry.Results reveal that micrite matrixes can be subdivided into three petrophysical classes. Class C (strictly microporous limestones with coarse punctic-to-partially coalescent micrites) is made up of coarse (>2 μm) polyhedral to rounded micritic crystals, it has good to excellent porosity (8-28%), poor to moderate permeability (0.2-190 mD) and a mean pore threshold radius of more than 0.5 μm. The class C is usually observed in rudist shoal facies where relatively high hydrodynamic energy disfavoured deposition of the finer micritic crystals. It also developed within meteoric leaching intervals below exposure surfaces. Class F (strictly microporous limestones with fine punctic-to-partially coalescent micrites) is composed of fine (<2 μm) polyhedral to rounded micrites with poor to excellent porosity (3-35%), but permeability values of less than 10 mD and a mean pore threshold radius of less than 0.5 μm. It is mostly observed in sediments deposited in a low energy muddy inner platform setting. Class D (strictly microporous mud-dominated facies with compact anhedral to fused dense micrites) comprises subhedral to anhedral crystals with sutured contacts forming a dense matrix. It has very low porosity and permeability. Class D is only found in low energy muddy inner platform facies and forms inter-reservoir or caps rock layers in close association with stylolites and clay contents that usually exceed 10%.  相似文献   
103.
Frequently preserved in archaeological and palaeontological sites, the tiny size of small-mammal remains favours percolations into underlying layers along stratigraphic sequences. This is one of the various post-depositional processes that may affect the integrity of the original deposits and therefore the subsequent scientific interpretations. Recent developments in sample preparation offer the possibility of detecting intrusive episodes through the absolute dating of minute amounts of bone (down to 10 mg), meaning that isolated elements (such as mandibles in this case) are sufficient to obtain reliable radiocarbon dates if collagen is moderately to well preserved. The radiocarbon dates obtained here for small-mammal bones (recovered from pre-Bølling to recent deposits) and their comparison with previous dates obtained from other sources (large-mammal bones, charcoal, botanical samples, etc.), with different protocols and instruments, illustrate the potential of small-mammal dating to reveal (and eventually contribute a solution to) stratigraphical issues in different archaeological contexts.  相似文献   
104.
In this study, we analysed decadal and long-term steric sea level variations over 1966–2007 period in the Indo-Pacific sector, using an ocean general circulation model forced by reanalysis winds. The simulated steric sea level compares favourably with sea level from satellite altimetry and tide gauges at interannual and decadal timescales. The amplitude of decadal sea level variability (up to ~5 cm standard deviation) is typically nearly half of the interannual variations (up to ~10 cm) and two to three times larger than long-term sea level variations (up to 2 cm). Zonal wind stress varies at decadal timescales in the western Pacific and in the southern Indian Ocean, with coherent signals in ERA-40 (from which the model forcing is derived), NCEP, twentieth century and WASWind products. Contrary to the variability at interannual timescale, for which there is a tendency of El Niño and Indian Ocean Dipole events to co-occur, decadal wind stress variations are relatively independent in the two basins. In the Pacific, those wind stress variations drive Ekman pumping on either side of the equator, and induce low frequency sea level variations in the western Pacific through planetary wave propagation. The equatorial signal from the western Pacific travels southward to the west Australian coast through equatorial and coastal wave guides. In the Indian Ocean, decadal zonal wind stress variations induce sea level fluctuations in the eastern equatorial Indian Ocean and the Bay of Bengal, through equatorial and coastal wave-guides. Wind stress curl in the southern Indian Ocean drives decadal variability in the south-western Indian Ocean through planetary waves. Decadal sea level variations in the south–western Indian Ocean, in the eastern equatorial Indian Ocean and in the Bay of Bengal are weakly correlated to variability in the Pacific Ocean. Even though the wind variability is coherent among various wind products at decadal timescales, they show a large contrast in long-term wind stress changes, suggesting that long-term sea level changes from forced ocean models need to be interpreted with caution.  相似文献   
105.
Radical grain size changes between two main units of a sedimentary megacycle in a foreland basin are commonly interpreted to result from changes in tectonic activity or climate in the adjacent mountain range. In central Nepal, the Cenozoic Siwalik molasse deposits exposed in the frontal Himalayan folds are characterized by such a radical grain size transition. Locally gravel deposits completely replace sands in vertical succession over approximately a hundred metres, the median grain size (D50) displaying a sharp increase by a factor of ca. 100. Such a rapid gravel‐sand transition (GST) is also observed in present‐day river channels about 8–20 km downstream from the outlet of the Siwalik Range. The passage from gravel‐bed channel reaches (proximal alluvial fans) to sand‐bed channel reaches (distal alluvial fans) occurs within a few kilometres on the Gangetic Plain in central Nepal, and the D50 ratio between the two types of channels equals ca. 100. We propose that the dramatic and remarkably similar increase in grain size observed in the Neogene Siwalik series and along modern rivers in the Gangetic foreland basin, results from a similar hydraulic process, i.e. a grain sorting process during the selective deposition of the sediment load. The sudden appearance of gravels in the upper Siwalik series would be related to the crossing of this sorting transition during progressive southward migration of the gravel front, in response to continuous Himalayan orogen construction. And as a consequence, the GST would be diachronous by nature. This study demonstrates that an abrupt change in grain size does not necessarily relate to a change in tectonic or climatic forcing, but can simply arise from internal adjustment of the piedmont rivers to the deposition and run out of coarse bedload. It illustrates, in addition, the genesis of quartz‐rich conglomerates in the Himalayan foreland through gravel selective deposition associated with differential weathering, abrasion processes and sediment recycling during thrust wedge advance and shortening of the foreland basin.  相似文献   
106.
This article examines the shoreline evolution and human occupation in the vicinity of the important archeological site of Amarynthos (Euboea Island, Greece) over the last six millennia. Archeological evidence indicates a continuous occupation of the site from the Bronze Age to the Roman period and the site is well-known, thanks to the existence of a sanctuary dedicated to the goddess Artemis. Based on the study of four boreholes, a paleogeographic reconstruction of the coastal landscape is proposed. Facies were determined based on mollusc identification, and sedimentology based on grain-size measurements (hand sieving for the fraction above 2?mm and LASER technique for particles below 2?mm) and loss-on-ignition. In addition, a series of 12 AMS radiocarbon dates define a reliable chronostratigraphy. Results suggest the presence of a fully marine environment from the early Holocene to ca. 2600–2400?cal. BC, which developed into a brackish environment from ca. 2600–2400?cal. BC to ca. 750?cal. BC due to the deltaic progradation of the nearby stream (Sarandapotamos River). From ca. 750?cal. BC onward, coastal swamps prevailed in the study area. Human-environmental interaction is discussed and particular attention is paid to the paleolandscape configuration of Amarynthos.  相似文献   
107.
108.

The Callovo Oxfordian clay-rock (COx) is studied in France for the disposal of radioactive waste, because of its extremely low permeability. This host rock is governed by a hydromechanical coupling of high complexity. This paper presents an experimental study into the mechanisms of water uptake in small, unconfined, prismatic specimens of COx, motivated by the comprehension of cracking observed during concrete/COx interface sample preparation. Water uptake is monitored using both X-ray tomography and neutron radiography, the combination of these imaging techniques allowing material deformation and water arrival to be quantified, respectively. Given the speed of water entry and crack propagation, relatively fast imaging is required: 5-min X-ray tomographies and 10-s neutron radiographs are used. In this study, pairs of similar COx samples from the same core are tested separately with each imaging technique. Two different orientations with respect to the core are also investigated. Analysis of the resulting images yields with micro- and macro-scale insights into hydromechanical mechanisms to be obtained. This allows the cracking to be interpreted as a rapid breakdown in capillary suction (supposed large both to drying and rebound from in situ stress state) due to water arrival, which in turn causes a loss of effective stress, allowing cracks to propagate and deliver water further into the material.

  相似文献   
109.
110.
We construct long-term time series of Greenland and Antarctic ice sheet mass change from satellite gravity measurements. A statistical reconstruction approach is developed based on a principal component analysis (PCA) to combine high-resolution spatial modes from the Gravity Recovery and Climate Experiment (GRACE) mission with the gravity information from conventional satellite tracking data. Uncertainties of this reconstruction are rigorously assessed; they include temporal limitations for short GRACE measurements, spatial limitations for the low-resolution conventional tracking data measurements, and limitations of the estimated statistical relationships between low- and high-degree potential coefficients reflected in the PCA modes. Trends of mass variations in Greenland and Antarctica are assessed against a number of previous studies. The resulting time series for Greenland show a higher rate of mass loss than other methods before 2000, while the Antarctic ice sheet appears heavily influenced by interannual variations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号