首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   567篇
  免费   33篇
  国内免费   5篇
测绘学   15篇
大气科学   93篇
地球物理   120篇
地质学   205篇
海洋学   33篇
天文学   84篇
综合类   14篇
自然地理   41篇
  2024年   2篇
  2023年   3篇
  2021年   8篇
  2020年   10篇
  2019年   12篇
  2018年   25篇
  2017年   14篇
  2016年   31篇
  2015年   22篇
  2014年   25篇
  2013年   44篇
  2012年   36篇
  2011年   37篇
  2010年   33篇
  2009年   39篇
  2008年   38篇
  2007年   27篇
  2006年   25篇
  2005年   32篇
  2004年   16篇
  2003年   18篇
  2002年   8篇
  2001年   13篇
  2000年   5篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   7篇
  1993年   2篇
  1992年   1篇
  1991年   6篇
  1990年   4篇
  1989年   6篇
  1988年   7篇
  1987年   2篇
  1986年   4篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1967年   3篇
  1966年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有605条查询结果,搜索用时 15 毫秒
71.
Kochendorfer et al. (Boundary-Layer Meterol, 145:383–398, 2012) conducted an experiment to evaluate azimuth and angle-of-attack dependent errors of sonic anemometer measurements. Several questions are raised regarding the experimental design and the presented results. The finding that instruments with non-orthogonal sonic paths underestimate fluctuations of vertical wind speed and consequently also scalar fluxes by about 10 % is compared with the results of a hitherto unpublished side-by-side field comparison and other past intercomparison experiments. Scale considerations are presented that raise considerable doubts on the validity of the implicit assumption of Kochendorfer et al. (2012) that the turbulent wind vector is highly correlated across a distance of 1.2 m at a height of 2.5 m over flat grassland, which corresponds to the separation between the sonic anemometers tested in their experiment. Nevertheless, new developments in sonic anemometer design to minimize transducer-shadow effects are desirable.  相似文献   
72.
Processing and quality control of flux data during LITFASS-2003   总被引:1,自引:0,他引:1  
Different aspects of the quality assurance and quality control (QA/QC) of micrometeorological measurements were combined to create a comprehensive algorithm which was then applied to experimental data from LITFASS-2003 (Lindenberg Inhomogeneous Terrain—Fluxes between Atmosphere and Surface: a long term Study). Eddy-covariance measurements of the latent heat flux were the main focus of the QA/QC efforts. The results of a turbulence sensor intercomparison experiment showed deviations between the different eddy-covariance systems on the order of 15%, or less than 30 W m−2, for the latent heat flux and 5%, or less than 10 W m−2, for the sensible heat flux. In order to avoid uncertainties due to the post-processing of turbulence data, a comprehensive software package was used for the analysis of experimental data from LITFASS-2003, including all necessary procedures for corrections and quality control. An overview of the quality test results shows that for most of the days more than 80% of the available latent heat flux data are of high quality so long as there are no instrumental problems. The representativeness of a flux value for the target land-use type was analysed using a stochastic footprint model. Different methods to calculate soil heat fluxes at the surface are discussed and a sensitivity analysis is conducted to select the most robust method for LITFASS-2003. The lack of energy balance closure, which was found for LITFASS-2003, can probably be attributed to the presence of low-frequency flux contributions that cannot be resolved with an averaging time of 30 min. Though the QA/QC system has been developed for the requirements of LITFASS-2003, it can also be applied to other experiments dealing with similar objectives.  相似文献   
73.
An understanding of how the convective boundary layer (CBL) is mixed under heterogeneous surface forcing is crucial for the interpretation of area-averaged turbulence measurements. To determine the height and degree to which a complex heterogeneous surface affects the CBL, large-eddy simulations (LES) for two days of the LITFASS-2003 experiment representing two different wind regimes were undertaken. Spatially-lagged correlation analysis revealed the turbulent heat fluxes to be dependent on the prescribed surface flux pattern throughout the entire CBL including the entrainment layer. These findings prompted the question of whether signals induced by surface heterogeneity can be measured by airborne systems. To examine this question, an ensemble of virtual flights was conducted using LES, according to Helipod flight measurements made during LITFASS-2003. The resulting ensemble-averaged heat fluxes indicated a clear dependence on the underlying surface up to the top of the CBL. However, a large scatter between the flux measurements in different ensemble runs was observed, which was the result of insufficient sampling of the largest turbulent eddies. The random and systematic errors based on the integral length scale did not indicate such a large scatter. For the given flight leg lengths, at least 10–15 statistically independent flight measurements were necessary to give a significant estimate of heterogeneity-induced signals in the CBL. The need for ensemble averaging suggests that the observed blending of heterogeneity-induced signals in the CBL can be partly attributed to insufficient averaging.  相似文献   
74.
Sea level rise (SLR) due to climate change will increase storm surge height along the 825 km long coastline of Metro Boston, USA. Land at risk consists of urban waterfront with piers and armoring, residential areas with and without seawalls and revetments, and undeveloped land with either rock coasts or gently sloping beachfront and low-lying coastal marshes. Risk-based analysis shows that the cumulative 100 year economic impacts on developed areas from increased storm surge flooding depend heavily upon the adaptation response, location, and estimated sea level rise. Generally it is found that it is advantageous to use expensive structural protection in areas that are highly developed and less structural approaches such as floodproofing and limiting or removing development in less developed or environmentally sensitive areas.  相似文献   
75.
An Integrated Assessment of changes in the thermohaline circulation   总被引:1,自引:0,他引:1  
This paper discusses the risks of a shutdown of the thermohaline circulation (THC) for the climate system, for ecosystems in and around the North Atlantic as well as for fisheries and agriculture by way of an Integrated Assessment. The climate model simulations are based on greenhouse gas scenarios for the 21st century and beyond. A shutdown of the THC, complete by 2150, is triggered if increased freshwater input from inland ice melt or enhanced runoff is assumed. The shutdown retards the greenhouse gas-induced atmospheric warming trend in the Northern Hemisphere, but does not lead to a persistent net cooling. Due to the simulated THC shutdown the sea level at the North Atlantic shores rises by up to 80 cm by 2150, in addition to the global sea level rise. This could potentially be a serious impact that requires expensive coastal protection measures. A reduction of marine net primary productivity is associated with the impacts of warming rather than a THC shutdown. Regional shifts in the currents in the Nordic Seas could strongly deteriorate survival chances for cod larvae and juveniles. This could lead to cod fisheries becoming unprofitable by the end of the 21st century. While regional socioeconomic impacts might be large, damages would be probably small in relation to the respective gross national products. Terrestrial ecosystem productivity is affected much more by the fertilization from the increasing CO2 concentration than by a THC shutdown. In addition, the level of warming in the 22nd to 24th century favours crop production in northern Europe a lot, no matter whether the THC shuts down or not. CO2 emissions corridors aimed at limiting the risk of a THC breakdown to 10% or less are narrow, requiring departure from business-as-usual in the next few decades. The uncertainty about THC risks is still high. This is seen in model analyses as well as in the experts’ views that were elicited. The overview of results presented here is the outcome of the Integrated Assessment project INTEGRATION.  相似文献   
76.
This paper deals with the derivation of the convective mixing height and the characteristic convective velocity w * from profiles of w measured by sodar. The parameters were obtained by fitting an analytical profile to the observed data. Results were compared with values obtained by the meteorological preprocessor of a dispersion model and from noon radiosoundings. In addition, a Monte Carlo method was applied to study the influence of measurement errors. It turned out that it is inherently difficult to determine the depth of deep mixed layers from sodar measurements with a limited range, although the determination of w * should be possible. However, a significant underestimation of w , and thus w *, was found, which is probably due to disproportional sampling of updrafts and downdrafts.  相似文献   
77.
Near-total depletions of ozone have been observed in the Arctic spring since the mid 1980s. The autocatalytic reaction cycles involving reactive halogens are now recognized to be of main importance for ozone depletion events in the polar boundary layer. We present sensitivity studies using the model MISTRA in the box-model mode on the influence of chemical species on these ozone depletion processes. In order to test the sensitivity of the chemistry under polar conditions, we compared base runs undergoing fluxes of either Br2, BrCl, or Cl2 to induce ozone depletions, with similar runs including a modification of the chemical conditions. The role of HCHO, H2O2, DMS, Cl2, C2H6, HONO, NO2, and RONO2 was investigated. Cases with elevated mixing ratios of HCHO, H2O2, DMS, Cl2, and HONO induced a shift in bromine speciation from Br / BrO to HOBr/HBr, while high mixing ratios of C2H6 induced a shift from HOBr/HBr to Br/BrO. The shifts from Br/BrO to HOBr/HBr accelerated the aerosol debromination, but also increased the total amount of deposited bromine at the surface (mainly via increased deposition of HOBr). For all NOy species studied (HONO, NO2, RONO2) the chemistry is characterized by an increased bromine deposition on snow reducing the amount of reactive bromine in the air. Ozone is less depleted under conditions of high mixing ratios of NOx. The production of HNO3 led to the acid displacement of HCl, and the release of chlorine out of salt aerosol (Cl2 or BrCl) increased.  相似文献   
78.
Summary Soil temperature is often inadequately based upon relatively few measurements at widely dispersed locations. Within arid regions, such as the desert southwestern United States, soils, microclimates, and thus soil temperature may be markedly heterogeneous. Because extensive measurement of soil temperature is often not feasible, models are needed that simulate soil temperature based on readily available soil survey and above-ground weather information. This paper describes a simple energy-budget based model for simulating daily mean temperatures within a bare arid land soil. The model requires basic information on soil physical properties, and daily weather data including air temperature, windspeed, rainfall, and solar radiation to calculate daily surface energy budget components and surface temperature. One of two alternative numerical methods is then used to calculated subsurface temperatures. Tests of the model using 1987 daily temperature data from an arid site at Yuma, Arizona resulted in root mean square deviations within 1.4°C between daily modeled and measured temperatures at both 0.05 and 0.10 m depths. Sensitivity analysis showed modeled temperatures at 0.05 m depth to be most sensitive to parameters affecting the surface energy balance such as air temperature and solar radiation. Modeled temperatures at 1.0m depth were relatively more sensitive to initial temperature conditions and to parameters affecting distribution of energy within the profile such as thermal conductivity.With 3 Figures  相似文献   
79.
We apply and evaluate a recent machine learning method for the automatic classification of seismic waveforms. The method relies on Dynamic Bayesian Networks (DBN) and supervised learning to improve the detection capabilities at 3C seismic stations. A time-frequency decomposition provides the basis for the required signal characteristics we need in order to derive the features defining typical “signal” and “noise” patterns. Each pattern class is modeled by a DBN, specifying the interrelationships of the derived features in the time-frequency plane. Subsequently, the models are trained using previously labeled segments of seismic data. The DBN models can now be compared against in order to determine the likelihood of new incoming seismic waveform segments to be either signal or noise. As the noise characteristics of seismic stations varies smoothly in time (seasonal variation as well as anthropogenic influence), we accommodate in our approach for a continuous adaptation of the DBN model that is associated with the noise class. Given the difficulty for obtaining a golden standard for real data (ground truth) the proof of concept and evaluation is shown by conducting experiments based on 3C seismic data from the International Monitoring Stations, BOSA and LPAZ.  相似文献   
80.
In this paper we present densely sampled fumarole temperature data, recorded continuously at a high-temperature fumarole of Mt. Merapi volcano (Indonesia). These temperature time series are correlated with continuous records of rainfall and seismic waveform data collected at the Indonesian–German multi-parameter monitoring network. The correlation analysis of fumarole temperature and precipitation data shows a clear influence of tropical rain events on fumarole temperature. In addition, there is some evidence that rainfall may influence seismicity rates, indicating interaction of meteoric water with the volcanic system. Knowledge about such interactions is important, as lava dome instabilities caused by heavy-precipitation events may result in pyroclastic flows. Apart from the strong external influences on fumarole temperature and seismicity rate, which may conceal smaller signals caused by volcanic degassing processes, the analysis of fumarole temperature and seismic data indicates a statistically significant correlation between a certain type of seismic activity and an increase in fumarole temperature. This certain type of seismic activity consists of a seismic cluster of several high-frequency transients and an ultra-long-period signal (<0.002 Hz), which are best observed using a broadband seismometer deployed at a distance of 600 m from the active lava dome. The corresponding change in fumarole temperature starts a few minutes after the ultra-long-period signal and simultaneously with the high-frequency seismic cluster. The change in fumarole temperature, an increase of 5 °C on average, resembles a smoothed step. Fifty-four occurrences of simultaneous high-frequency seismic cluster, ultra-long period signal and increase of fumarole temperature have been identified in the data set from August 2000 to January 2001. The observed signals appear to correspond to degassing processes in the summit region of Mt. Merapi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号