首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1508篇
  免费   39篇
  国内免费   22篇
测绘学   29篇
大气科学   162篇
地球物理   371篇
地质学   511篇
海洋学   102篇
天文学   247篇
综合类   2篇
自然地理   145篇
  2024年   15篇
  2023年   7篇
  2022年   15篇
  2021年   40篇
  2020年   43篇
  2019年   44篇
  2018年   75篇
  2017年   58篇
  2016年   79篇
  2015年   55篇
  2014年   61篇
  2013年   103篇
  2012年   76篇
  2011年   100篇
  2010年   61篇
  2009年   99篇
  2008年   98篇
  2007年   96篇
  2006年   73篇
  2005年   57篇
  2004年   48篇
  2003年   44篇
  2002年   39篇
  2001年   24篇
  2000年   17篇
  1999年   18篇
  1998年   15篇
  1997年   7篇
  1996年   12篇
  1995年   4篇
  1994年   11篇
  1993年   11篇
  1992年   7篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1979年   8篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1973年   2篇
  1967年   1篇
  1966年   1篇
  1955年   1篇
排序方式: 共有1569条查询结果,搜索用时 15 毫秒
121.
Human systems will have to adapt to climate change. Understanding of the magnitude of the adaptation challenge at a global scale, however, is incomplete, constrained by a limited understanding of if and how adaptation is taking place. Here we develop and apply a methodology to track and characterize adaptation action; we apply these methods to the peer-reviewed, English-language literature. Our results challenge a number of common assumptions about adaptation while supporting others: (1) Considerable research on adaptation has been conducted yet the majority of studies report on vulnerability assessments and natural systems (or intentions to act), not adaptation actions. (2) Climate change is rarely the sole or primary motivator for adaptation action. (3) Extreme events are important adaptation stimuli across regions. (4) Proactive adaptation is the most commonly reported adaptive response, particularly in developed nations. (5) Adaptation action is more frequently reported in developed nations, with middle income countries underrepresented and low-income regions dominated by reports from a small number of countries. (6) There is limited reporting on adaptations being developed to take advantage of climate change or focusing on women, elderly, or children.  相似文献   
122.
    
Predicting the rocking response of structures to ground motion is important for assessment of existing structures, which may be vulnerable to uplift and overturning, as well as for designs which employ rocking as a means of seismic isolation. However, the majority of studies utilize a single rocking block to characterize rocking motion. In this paper, a methodology is proposed to derive equivalence between the single rocking block and various rocking mechanisms, yielding a set of fundamental rocking parameters. Specific structures that have exact dynamic equivalence with a single rocking block, are first reviewed. Subsequently, approximate equivalence between single and multiple block mechanisms is achieved through local linearization of the relevant equations of motion. The approximation error associated with linearization is quantified for three essential mechanisms, providing a measure of the confidence with which the proposed methodology can be applied. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
123.
    
ABSTRACT

India has been the subject of many recent groundwater studies due to the rapid depletion of groundwater in large parts of the country. However, few if any of these studies have examined groundwater storage conditions in all of India’s river basins individually. Herein we assess groundwater storage changes in all 22 of India’s major river basins using in situ data from 3420 observation locations for the period 2003–2014. One-month and 12-month standardized precipitation index measures (SPI-1 and SPI-12) indicate fluctuations in the long-term pattern. The Ganges and Brahmaputra basins experienced long-term decreasing trends in precipitation in both 1961–2014 and the study period, 2003–2014. Indeterminate or increasing precipitation trends occurred in other basins. Satellite-based and in situ groundwater storage time series exhibited similar patterns, with increases in most of the basins. However, diminishing groundwater storage (at rates of >0.4 km3/year) was revealed in the Ganges-Brahmaputra River Basin based on in situ observations, which is particularly important due to its agricultural productivity.  相似文献   
124.
    
This paper describes the hydrochemistry of a lowland, urbanised river‐system, The Cut in England, using in situ sub‐daily sampling. The Cut receives effluent discharges from four major sewage treatment works serving around 190 000 people. These discharges consist largely of treated water, originally abstracted from the River Thames and returned via the water supply network, substantially increasing the natural flow. The hourly water quality data were supplemented by weekly manual sampling with laboratory analysis to check the hourly data and measure further determinands. Mean phosphorus and nitrate concentrations were very high, breaching standards set by EU legislation. Although 56% of the catchment area is agricultural, the hydrochemical dynamics were significantly impacted by effluent discharges which accounted for approximately 50% of the annual P catchment input loads and, on average, 59% of river flow at the monitoring point. Diurnal dissolved oxygen data demonstrated high in‐stream productivity. From a comparison of high frequency and conventional monitoring data, it is inferred that much of the primary production was dominated by benthic algae, largely diatoms. Despite the high productivity and nutrient concentrations, the river water did not become anoxic, and major phytoplankton blooms were not observed. The strong diurnal and annual variation observed showed that assessments of water quality made under the Water Framework Directive (WFD) are sensitive to the time and season of sampling. It is recommended that specific sampling time windows be specified for each determinand, and that WFD targets should be applied in combination to help identify periods of greatest ecological risk. © 2015 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   
125.
    
The self‐centering rocking steel frame is a seismic force resisting system in which a gap is allowed to form between a concentrically braced steel frame and the foundation. Downward vertical force applied to the rocking frame by post‐tensioning acts to close the uplifting gap and thus produces a restoring force. A key feature of the system is replaceable energy‐dissipating devices that act as structural fuses by producing high initial system stiffness and then yielding to dissipate energy from the input loading and protect the remaining portions of the structure from damage. In this research, a series of large‐scale hybrid simulation tests were performed to investigate the seismic performance of the self‐centering rocking steel frame and in particular, the ability of the controlled rocking system to self‐center the entire building. The hybrid simulation experiments were conducted in conjunction with computational modules, one that simulated the destabilizing P‐Δ effect and another module that simulated the hysteretic behavior of the rest of the building including simple composite steel/concrete shear beam‐to‐column connections and partition walls. These tests complement a series of quasi‐static cyclic and dynamic shake table tests that have been conducted on this system in prior work. The hybrid simulation tests validated the expected seismic performance as the system was subjected to ground motions in excess of the maximum considered earthquake, produced virtually no residual drift after every ground motion, did not produce inelasticity in the steel frame or post‐tensioning, and concentrated the inelasticity in fuse elements that were easily replaced. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
126.
The Shuttle SBUV (SSBUV) and NOAA-11 SBUV/2 instruments measured solar spectral UV irradiance during the maximum and declining phase of solar cycle 22. The SSBUV data accurately represent the absolute solar UV irradiance between 200–405 nm, and also show the long-term variations during eight flights between October 1989 and January 1996. These data have been used to correct long-term sensitivity changes in the NOAA-11 SBUV/2 data, which provide a near-daily record of solar UV variations over the 170–400 nm region between December 1988 and October 1994. The NOAA-11 data demonstrate the evolution of short-term solar UV activity during solar cycle 22.  相似文献   
127.
Efficient, robust simulation of groundwater flow in the unsaturated zone remains computationally expensive, especially for problems characterized by sharp fronts in both space and time. Standard approaches that employ uniform spatial and temporal discretizations for the numerical solution of these problems lead to inefficient and expensive simulations. In this work, we solve Richards’ equation using adaptive methods in both space and time. Spatial adaption is based upon a coarse grid solve and a gradient error indicator using a fixed-order approximation. Temporal adaption is accomplished using variable order, variable step size approximations based upon the backward difference formulas up to fifth order. Since the advantages of similar adaptive methods in time are now established, we evaluate our method by comparison with a uniform spatial discretization that is adaptive in time for four different one-dimensional test problems. The numerical results demonstrate that the proposed method provides a robust and efficient alternative to standard approaches for simulating variably saturated flow in one spatial dimension.  相似文献   
128.
    
In this study, we captured how a river channel responds to a sediment pulse originating from a dam removal using multiple lines of evidence derived from streamflow gages along the Patapsco River, Maryland, USA. Gages captured characteristics of the sediment pulse, including travel times of its leading edge (~7.8 km yr−1) and peak (~2.6 km yr−1) and suggest both translation and increasing dispersion. The pulse also changed local hydraulics and energy conditions, increasing flow velocities and Froude number, due to bed fining, homogenization and/or slope adjustment. Immediately downstream of the dam, recovery to pre-pulse conditions occurred within the year, but farther downstream recovery was slower, with the tail of the sediment pulse working through the lower river by the end of the study 7 years later. The patterns and timing of channel change associated with the sediment pulse were not driven by large flow or suspended sediment-transporting events, with change mostly occurring during lower flows. This suggests pulse mobility was controlled by process-factors largely independent of high flow. In contrast, persistent changes occurred to out-of-channel flooding dynamics. Stage associated with flooding increased during the arrival of the sediment pulse, 1 to 2 years after dam removal, suggesting persistent sediment deposition at the channel margins and nearby floodplain. This resulted in National Weather Service-indicated flood stages being attained by 3–43% smaller discharges compared to earlier in the study period. This study captured a two-signal response from the sediment pulse: (1) short- to medium-term (weeks to months) translation and dispersion within the channel, resulting in aggradation and recovery of bed elevations and changing local hydraulics; and (2) dispersion and persistent longer-term (years) effects of sediment deposition on overbank surfaces. This study further demonstrated the utility of US Geological Survey gage data to quantify geomorphic change, increase temporal resolution, and provide insights into trajectories of change over varying spatial and temporal scales.  相似文献   
129.
    
Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in the baseflow fraction of streamflow, assessing whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate baseflow discharge and baseflow dissolved solids loads at stream gages (n = 69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow, indicating that subsurface transport processes play a dominant role in delivering dissolved solids to streams in the UCRB. A statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams (n = 27) from 1986 to 2011. Decreasing trends in baseflow dissolved solids loads were observed at 63% of streams. At the three most downstream sites, Green River at Green River, UT, Colorado River at Cisco, UT, and the San Juan River near Bluff, UT, baseflow dissolved solids loads decreased by a combined 823,000 metric tons (mT), which is approximately 69% of projected basin‐scale decreases in total dissolved solids loads as a result of salinity control efforts. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, landscape changes, and/or climate are reducing dissolved solids transported to streams through the subsurface. Notably, the pace and extent of decreases in baseflow dissolved solids loads declined during the most recent decade; average decreasing loads during the 2000s (28,200 mT) were only 54% of average decreasing loads in the 1990s (51,700 mT).  相似文献   
130.
Bovine tuberculosis (TB) poses a serious threat for agricultural industry in several countries, it involves potential interactions between wildlife and cattle and creates societal problems in terms of human-wildlife conflict. This study addresses connectedness network analysis, the spatial, and temporal dynamics of TB between cattle in farms and the European badger (Meles meles) using a large dataset generated by a calibrated agent based model. Results showed that infected network connectedness was lower in badgers than in cattle. The contribution of an infected individual to the mean distance of disease spread over time was considerably lower for badger than cattle; badgers mainly spread the disease locally while cattle infected both locally and across longer distances. The majority of badger-induced infections occurred when individual badgers leave their home sett, and this was positively correlated with badger population growth rates. Point pattern analysis indicated aggregation in the spatial pattern of TB prevalence in badger setts across all scales. The spatial distribution of farms that were not TB free was aggregated at different scales than the spatial distribution of infected badgers and became random at larger scales. The spatial cross correlation between infected badger setts and infected farms revealed that generally infected setts and farms do not coexist except at few scales. Temporal autocorrelation detected a two year infection cycle for badgers, while there was both within the year and longer cycles for infected cattle. Temporal cross correlation indicated that infection cycles in badgers and cattle are negatively correlated. The implications of these results for understanding the dynamics of the disease are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号