首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   10篇
  国内免费   9篇
测绘学   1篇
大气科学   19篇
地球物理   52篇
地质学   70篇
海洋学   64篇
天文学   27篇
自然地理   15篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   5篇
  2018年   9篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   4篇
  2013年   9篇
  2012年   15篇
  2011年   13篇
  2010年   8篇
  2009年   16篇
  2008年   7篇
  2007年   14篇
  2006年   9篇
  2005年   6篇
  2004年   12篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   8篇
  1999年   7篇
  1998年   3篇
  1997年   6篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   7篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   9篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   4篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有248条查询结果,搜索用时 31 毫秒
51.
Index species of zooplankton of the Oyashio water are found in and beneath the salinity minimum layer in Sagami Bay. In order to clarify the intrusion path of the intermediate Oyashio Water (or the water of the Mixed Water Region), the oceanographic conditions off the Boso Peninsula are studied by using available hydrographic data obtained mainly by Japan Meteorological Agency. The cross-sectional salinity distribution along KJ line which extends southeastward from off the tip of the peninsula always indicates the existence of a low salinity patch just off the coast in the salinity minimum layer. This water is well separated from the offshore low salinity water which is considered as the water in the western margin of the so-called North Pacific Intermediate Water. We refer to the former water as the coastal salinity-minimum-layer (SML) water and to the latter as the offshore SML water. The coastal SML water is usually bounded by the current zone of the Kuroshio. The existence of the coastal SML water seems to indicate the possible pathway of the intermediate Oyashio water along the Boso Peninsula into Sagami Bay. The detailed water type analysis is made in T-S plane, S-st plane, and O2-st plane. There is no significant difference in distribution ranges of the water types between the coastal SML water and the offshore SML water. However, the water types of the coastal SML water is not uniformly distributed, and the water can be classified into two groups: group A with relatively high oxygen content and relatively low salinity value and group B with relatively low oxygen content and relatively high salinity value. Group A is thought to be associated with strong event-like intrusions, the details of which will be discussed in Part II.  相似文献   
52.
If knowledge of our theories on the directivity of tsunamis had received worldwide attention, the following operations could have been carried out internationally just after the large earthquake of 19 September 1985 which occurred near Acapulco, Mexico. Having found the great circle, “line S” which is perpendicular to the coast around Acapulco, we could have calculated the angles between line S and line A and between line S and line D, where line A and line D are the great circle connecting Acapulco and Auckland, New Zealand and that connecting Acapulco and Duke of York Island (Chile), respectively. The resultant angles are 30?43′ and 41?49′(>68?48′/2), we could thereafter neglect the eastern half of the offshore energy flux. When we assume that the speed of trans-Pacific tsunami is 400 knots, the probability that the actual tsunami will come earlier than the calculated arrival time proves to be $$\frac{1}{{\sqrt {2\pi } }}\int_{ - {\text{ }}\infty }^{ - {\text{ }}0.689} {e^{ - t^{{2 \mathord{\left/ {\vphantom {2 2}} \right. \kern-\nulldelimiterspace} 2}} } dt = 0.2454} $$ Contact with New Zealand prior to the forecasted arrival time was essential, but the tsunami attention for the Japanese coast was unnecessary. Without such application of our directivity theories, frequent fruitless warnings will be issued for future trans-Pacific tsunamis. Quick improvements in warning procedures are required.  相似文献   
53.
Deep-circulation flow at mid-latitude in the western North Pacific   总被引:1,自引:1,他引:1  
Direct current measurements with five moorings at 27–35°N, 165°E from 1991 to 1993 and with one mooring at 27°N, 167°E from 1989 to 1991 revealed temporal variations of deep flow at mid-latitude in the western North Pacific. The deep-circulation flow carrying the Lower Circumpolar Deep Water from the Southern Ocean passed 33°N, 165°E northwestward with a high mean velocity of 7.8 cm s−1 near the bottom and was stable enough to continue for 4–6 months between interruptions of 1- or 2-months duration. The deep-circulation flow expanded or shifted intermittently to the mooring at 31°N, 165°E but did not reach 35°N, 165°E although it shifted northward. The deep-circulation flow was not detected at the other four moorings, whereas meso-scale eddy variations were prominent at all the moorings, particularly at 35°N and 29°N, 165°E. The characteristics of current velocity and dissolved oxygen distributions led us to conclude that the deep-circulation flow takes a cyclonic pathway after passing through Wake Island Passage, passing 24°N, 169.5–173°E and 30°N, 168–169°E northward, proceeds northwestward around 33°N, 165°E, and goes westward through the south of the Shatsky Rise. We did not find that the deep-circulation flow proceeded westward along the northern side of the Mid-Pacific Seamounts and eastward between the Hess Rise and the Hawaiian Ridge toward the Northeast Pacific Basin.  相似文献   
54.
Although the Tsushima Current exhibits a complicated meander in the interior region of the Japan Sea, its path is more regular in the southwest region near the Tsushima Strait, and three branches have often been recognized there by many investigators. However, the detailed structures and temporal variabilities of these branches have not been clarified, and so they are studied here by analysing temperature, salinity and sea level data. It is shown that the existence of the first branch (the nearshore branch along the Japanese coast) can be detected from salinity distributions at least during the period from March to August. The third branch (the Eastern Korean Current) exists in all seasons. On the other hand, the second branch (the offshore branch) is seasonally variable and can be identified only in summer from June to August. Along the Japanese coast of southwest Japan Sea, the main pycnocline intersects the gentle slope on the shelf at a depth between 150 and 200 m. The first branch is found on the coastal side of the line where the main pycnocline intersects the bottom slope. On the other hand, the second branch is formed just on the seaward side of this line. Sea level differences in the Tsushima Strait, i.e., between Hakata and Izuhara and between Izuhara and Pusan, show that the seasonal variation of the surface velocity (or volume transport) is small in the eastern channel and large in the western channel. The period during which the surface velocity and volume transport in the western channel increase corresponds well to the period during which the second branch exists. These results suggest that the effects of bottom topography and oceanic stratification in the Japan Sea as well as the time variation of inflow through the western channel of the Tsushima Strait play important roles in the formation of the second branch.  相似文献   
55.
Some aspects of the biology of the micronektonic fishesCyclothone pallida andC. acclinidens are described on the basis of samples taken during a series of 20 cruises from December 1982 to November 1985 at a fixed station near the center of Sagami Bay, Central Japan.C. pallida is a regular component of theCyclothone population in Sagami Bay, being found in more than 90% of the samples. On the other hand,C. acclinidens was encountered sporadically, being found in less than 25% of the samples. The depth range ofC. pallida is estimated to be about 400–1,000 m. It spawns mainly during the spring and summer in Sagami Bay.C. pallida releases about 1,000–3,000 eggs and may spawn several times during its life span. On the average, it reaches 18.5 mm standard length (SL) in one year, 24 mm SL in two years and 29.5 mm SL in three years during its subadult stage. Extrapolation of the growth curve suggests that males and females attain first sexual maturity in three to four years at 30–35 mm and five to six years at 40–45 mm SL, respectively.Cyclothone pallida is concluded to have a regular life cycle in Sagami Bay. It remains uncertain whether or notC. acclinidens reproduces in this area.  相似文献   
56.
The coastal sea level propagating westward along the south coast of Japan and the impact of the disturbance on the generation of the Kuroshio small meander have been examined. The propagation occurs in sea level variations for periods shorter than 10 days and is remarkable for periods of 4–6 days. Characteristics of the 4–6 day component have been studied using the extended empirical orthogonal function (EEOF). The first and second modes of EEOF are almost in-phase throughout the south coast of Japan. The higher four modes of EEOF are significantly excited when the Kuroshio takes the non-large-meander path, and propagate westward with phase speeds of 2.8 m s−1 (third and fourth modes) and 1.6 m s−1 (fifth and sixth modes) in the Kuroshio region west of Mera in the Boso Peninsula. The analysis shows that more than 70% of the small meanders generate in two months after a significant propagating disturbance reaches south of Kyushu when the velocity of the Kuroshio is high. This effect of coastal disturbance is examined by numerical experiments with a 2.5-layer model in which coastal disturbance is excited by vertical displacement of the upper interface. The result is that offshore displacement of the Kuroshio occurs southeast of Kyushu only in the case of significant upward displacement of the interface under the influence of a high Kuroshio velocity. The significant coastal disturbance, which is associated with upward displacement of the density interface, and a high Kuroshio velocity can therefore be important factors in generating small meanders.  相似文献   
57.
Properties of the index of position of the Kuroshio axis in the Tokara Strait, named the Kuroshio position index (KPI), were examined using sea-level data during 1984–92. The index is KPI=(X+M x )/(Y+M y whereX(Y) is the anomaly of sea-level difference of Nakanoshima (Naze) minus Nishinoomote from the 1984–92 meanM x (M y ). The correlation with the latitude of the Kuroshio axis in the Tokara Strait concluded that the KPI withM x /M y =0.83 and realisticM y (100±40 cm) best indicates the position of the Kuroshio axis in the strait. The KPI withM x =83 cm andM y =100 cm was newly called the KPI as the best index. Using daily values of this KPI, the relation between the position of the Kuroshio in the strait and the large meander of the Kuroshio shown by Kawabe (1995) was confirmed and studied in detail. A large meander forms (ends) 3.3 (5.1) months after a northward (southward) shift of the Kuroshio in the Tokara Strait. Yet, a temporary southward shift with a duration of ten to twenty days does not finish the large-meander (LM) path. At the LM formation, a small meander southeast of Kyushu begins to move eastward associated with the northward shift. The processes of LM formation and decay are started by the meridional move of the Kuroshio axis in the Tokara Strait. The Kuroshio axis at the FES line during the LM path is located farther north by 7 latitude than that during the non-large-meander (NLM) path. The latitude during the LM formation (decay) stage is a little higher (lower) than that during the LM (NLM) period, though the Kuroshio still takes an NLM (LM) path.  相似文献   
58.
Fluctuation of dissolved organic carbon (DOC) was studied during 1971–1972 at monthly intervals in surface layers of Sagami Bay. Concentration of DOC varied from 0.8 to 1.7 mgC/l in surface water (0 m). Maximum concentration of 1.7 mgC/l was observed in July 1971 and after then DOC decreased gradually to a minimum of 0.8 mgC/l in May 1972. The fluctuation of DOC during the observation periods seems to have close relations with those of water temperature and salinity. High DOC concentration found in summer months may be associated with bloom of phytoplankton or intrusion of seawater from Tokyo Bay and/or inland water containing high DOC.  相似文献   
59.
Transitions between the three typical paths of the Kuroshio south of Japan (the nearshore and offshore non-large-meander paths and the large-meander path) are described using sea level data at Miyake-jima and HachijÔ-jima in the Izu Islands and temperature data at a depth of 200 m observed from 1964 to 1975 and in 1980.In transitions between the nearshore and offshore non-large-meander paths the variation of the Kuroshio path occurs first in the region off Enshû-nada between the Kii Peninsula and the Izu Ridge and subsequently over the ridge. In the nearshore to offshore transition the offshore displacement of the path occurs first off Enshû-nada and then develops southeastwardly in the direction of HachijÔ-jima. In the reverse transition shoreward displacement occurs first off Enshû-nada and then throughout the region west and east of the Izu Ridge. The position of the Kuroshio south of Cape Shiono-misaki (the southernmost tip of the Kii Peninsula) is almost fixed near the coast throughout these transition periods, and significant variations of the Kuroshio path only occur east of the cape. The nearshore to offshore and offshore to nearshore transitions can be estimated to take about 25 and 35 days, respectively, during which the variation of the Kuroshio path over the Izu Ridge occurs for the last 11 and 25 days.The transitions between the non-large-meander and large-meander paths show that the large-meander path is mostly formed from the nearshore non-large-meander path and always changes to the offshore non-large-meander path.  相似文献   
60.
We conducted full-depth hydrographic observations between 8°50′ and 44°30′N at 165°W in 2003 and analyzed the data together with those from the World Ocean Circulation Experiment and the World Ocean Database, clarifying the water characteristics and deep circulation in the Central and Northeast Pacific Basins. The deep-water characteristics at depths greater than approximately 2000 dbar at 165°W differ among three regions demarcated by the Hawaiian Ridge at around 24°N and the Mendocino Fracture Zone at 37°N: the southern region (10–24°N), central region (24–37°N), and northern region (north of 37°N). Deep water at temperatures below 1.15 °C and depths greater than 4000 dbar is highly stratified in the southern region, weakly stratified in the central region, and largely uniform in the northern region. Among the three regions, near-bottom water immediately east of Clarion Passage in the southern region is coldest (θ<0.90 °C), most saline (S>34.70), highest in dissolved oxygen (O2>4.2 ml l?1), and lowest in silica (Si<135 μmol kg?1). These characteristics of the deep water reflect transport of Lower Circumpolar Deep Water (LCDW) due to a branch current south of the Wake–Necker Ridge that is separated from the eastern branch current of the deep circulation immediately north of 10°N in the Central Pacific Basin. The branch current south of the Wake–Necker Ridge carries LCDW of θ<1.05 °C with a volume transport of 3.7 Sv (1 Sv=106 m3 s?1) into the Northeast Pacific Basin through Horizon and Clarion Passages, mainly through the latter (~3.1 Sv). A small amount of the LCDW flows northward at the western boundary of the Northeast Pacific Basin, joins the branch of deep circulation from the Main Gap of the Emperor Seamounts Chain, and forms an eastward current along the Mendocino Fracture Zone with volume transport of nearly 1 Sv. If this volume transport is typical, a major portion of the LCDW (~3 Sv) carried by the branch current south of the Wake–Necker and Hawaiian Ridges may spread in the southern part of the Northeast Pacific Basin. In the northern region at 165°W, silica maxima are found near the bottom and at 2200 dbar; the minimum between the double maxima occurs at a depth of approximately 4000 dbar (θ~1.15 °C). The geostrophic current north of 39°N in the upper deep layer between 1.15 and 2.2 °C, with reference to the 1.15 °C isotherm, has a westward volume transport of 1.6 Sv at 39–44°30′N, carrying silica-rich North Pacific Deep Water from the northeastern region of the Northeast Pacific Basin to the Northwest Pacific Basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号