首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   9篇
  国内免费   9篇
大气科学   16篇
地球物理   43篇
地质学   61篇
海洋学   56篇
天文学   20篇
自然地理   12篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   9篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   4篇
  2013年   9篇
  2012年   12篇
  2011年   11篇
  2010年   8篇
  2009年   14篇
  2008年   6篇
  2007年   12篇
  2006年   7篇
  2005年   3篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   5篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   8篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
131.
A large earthquake (Mw 8.1) that occurred off the North Coast of the Antarctic continent near the Balleny Islands on 25 March 1998 was the largest intra-plate earthquake ever recorded in the Antarctic Plate. The earthquake hypocenter catalog for this area shows a marked change in seismicity following the main shock in a large area around the Balleny aftershock region. However, the earthquake catalog includes many aftershocks and is affected by a variable detection rate. To overcome these limitations, we applied statistical models and methods, including Gutenberg–Richter’s magnitude frequency distribution, the Epidemic-Type Aftershock Sequences (ETAS) model, and the space–time ETAS model, thereby enabling calculation of the change in detection rate. The results show a change in the spatial pattern of background seismicity over a large region after the 1998 event.  相似文献   
132.
Here, we report the first discovery of an amorphous SiO2 phase (APSI phase) in a pseudomorph after coesite included in garnet from an ultrahigh‐pressure (UHP) eclogite from the Su–Lu metamorphic belt, eastern China. Using transmission electron microscopy, Raman spectroscopy and selected area electron diffraction, we show that the internal structure of the pseudomorph consists of an APSI phase with nano/submicrocrystalline particles of quartz and a polycrystalline K‐bearing fibrous sheet‐silicate phase (KFSS phase). The APSI phase‐bearing aggregates included in the garnet might have formed by reactions involving a supercritical fluid during exhumation by the following processes: (1) the development of radial cracks within the host garnet by the phase transition of coesite to quartz; (2) the decomposition of a part of the pseudomorph following infiltration of supercritical fluid; (3) the precipitation of the KFSS phase from the fluid phase during subsequent exhumation and cooling, which was likely promoted by a change in the metamorphic fluid from supercritical and/or subcritical to aqueous fluid; and (4) the rapid precipitation of the APSI phase under a metastable (non‐equilibrium) state, such as quenching, during a later stage of the exhumation. Whether the APSI phase generally formed during exhumation and survived widely throughout the Su‐Lu terrane is unknown. However, the presence of the APSI phase in a UHP eclogite provides new insight into the geodynamic phenomena occurring at continental collision zones.  相似文献   
133.
Recently, quick triggering of magnetic reconnection (QMRT) even in an ion-scale current sheet is found to be possible with the help of the nonlinear evolution of the lower hybrid drift instability (LHDI). The details of the QMRT mechanism are reviewed mostly based on three-dimensional full-particle simulation results of our group. QMRT is mediated by LHDI and its time scale is comparable to the saturation time scale of LHDI. Depending on the initial current sheet thickness, two types of QMRT, so-called Type-I and Type-II QMRT, are demonstrated.  相似文献   
134.
Direct velocity measurements undertaken using a nine-system mooring array (M1–M9) from 2004 to 2005 and two additional moorings (M7p and M8p) from 2003 to 2004 reveal the spatial and temporal properties of the deep-circulation currents southwest of the Shatsky Rise in the western North Pacific. The western branch of the deep-circulation current flowing northwestward (270–10° T) is detected almost exclusively at M2 (26°15′N), northeast of the Ogasawara Plateau. It has a width less than the 190 km distance between M1 (25°42′N) and M3 (26°48′N). The mean current speed near the bottom at M2 is 3.6±1.3 cm s?1. The eastern branch of the deep-circulation current is located at the southwestern slope of the Shatsky Rise, flowing northwestward mainly at M8 (30°48′N) on the lower part of the slope of the Shatsky Rise with a mean near-bottom speed of 5.3±1.4 cm s?1. The eastern branch often expands to M7 (30°19′N) at the foot of the rise with a mean near-bottom speed of 2.8±0.7 cm s?1 and to M9 (31°13′N) on the middle of the slope of the rise with a speed of 2.5±0.7 cm s?1 (nearly 4000 m depth); it infrequently expands furthermore to M6 (29°33′N). The width of the eastern branch is 201±70 km on average, exceeding that of the western branch. Temporal variations of the volume transports of the western and eastern branches consist of dominant variations with periods of 3 months and 1 month, varying between almost zero and significant amount; the 3-month-period variations are significantly coherent to each other with a phase lag of about 1 month for the western branch. The almost zero volume transport occurs at intervals of 2–4 months. In the eastern branch, volume transport increases with not only cross-sectional average current velocity but also current width. Because the current meters were too widely spaced to enable accurate estimates of volume transport, mean volume transport is overestimated by a factor of nearly two, yielding values of 4.1±1.2 and 9.8±1.8 Sv (1 Sv=106 m3 s?1) for the western and eastern branches, respectively. In addition, a northwestward current near the bottom at M4 (27°55′N) shows a marked variation in speed between 0 and 20 cm s?1 with a period of 45 days. This current may be part of a clockwise eddy around a seamount located immediately east of M4.  相似文献   
135.
Numerical models are systematically presented for time-dependent thermal convection of Newtonian fluid with strongly temperature-dependent viscosity in a two-dimensional rectangular box of aspect ratio 3 at various values of the Rayleigh number Rab defined with viscosity at the bottom boundary up to 1.6×108 and the viscosity contrast across the box rη up to 108. We found that there are two different series of bifurcations that take place as rη increases. One series of bifurcations causes changes in the behavior of the thermal boundary layer along the surface boundary from small-viscosity-contrast (SVC) mode, through transitional (TR) mode, to stagnant-lid (ST) mode, or from SVC mode directly to ST mode, depending on Rab. Another series of bifurcations causes changes in the aspect ratio of convection cells; convection with an elongated cell can take place at moderate rη (103–105.5 at Rab=6×106), while only convection of aspect ratio close to 1 takes place at small rη and large rη. The parameter range of rη and Rab for elongated-cell convection overlaps the parameter range for SVC and ST modes and include the entire parameter range for TR mode. In the elongated-ST regime, the lid of highly viscous fluid along the top boundary is not literally ‘stagnant’ but can horizontally move at a velocity high enough to induce a convection cell with aspect ratio much larger than 1.  相似文献   
136.
To clarify the global deep-water circulation in the northwest Pacific, we conducted current observations with seven moorings at 40°N east of Japan from May 2007 to October 2008, together with hydrographic observations. By analyzing the data, while taking into consideration that the deep circulation has a northward component in this region and carries low-silica, high-dissolved-oxygen water, we clarified that the deep circulation flows within the region between 144°30′ and 146°10′E at 40°N on and east of the eastern slope of the Japan Trench with marked variability; the deep circulation flows partly on the eastern slope of the trench and mainly to the east during P1 (10 May–24 November 2007), is confined to the eastern slope of the trench during P2 (25 November 2007–20 May 2008), and flows on and to the immediate east of the eastern slope of the trench during P3 (21 May–15 October 2008). Previous studies have identified two branches of the deep circulation at lower latitudes in the western North Pacific; one flows off the western trenches and the other detours near the Shatsky Rise. It was thus concluded that the eastern branch flows westward at 38°N and then northward to the east of the trench, finally joining the western branch around 40°N during P1 and P3, whereas the eastern branch passes westward south of 38°N, joins the western branch around 38°N, and flows northward on the eastern slope of the trench during P2.  相似文献   
137.
Because the solar wind (SW) flow is usually super-sonic, a fast-mode bow shock (BS) is formed in front of the Earth's magnetosphere, and the Moon crosses the BS at both dusk and dawn flanks. On the other hand, behind of the Moon along the SW flow forms a tenuous region called lunar wake, where the flow can be sub-Alfvénic (and thus sub-sonic) because of its low-density status. Here we report, with joint measurement by Chang’E-1 and SELENE, that the Earth's BS surface is drastically deformed in the lunar wake. Despite the quasi-perpendicular shock configuration encountered at dusk flank under the Parker-spiral magnetic field, no clear shock surface can be found in the lunar wake, while instead gradual transition of the magnetic field from the upstream to downstream value was observed for a several-minute interval. This finding suggests that the ‘magnetic ramp’ is highly broadened in the wake where a fast-mode shock is no longer maintained due to the highly reduced density. On the other hand, observations at the 100 km altitude on the dayside show that the fast-mode shock is maintained even when the width of the downstream region is smaller than a typical scale length of a perpendicular shock. Our results suggest that the Moon is not so large to eliminate the BS at 100 km altitude on the dayside, while the magnetic field associated with the shock structure is drastically affected in the lunar wake.  相似文献   
138.
Initial plant colonization is critical in determining subsequent ecosystem development. In a High-Arctic oasis showing atypical “directional primary succession”, we quantified the microhabitat characteristics associated with colonization by pioneer vascular plants of a bare moraine. The study moraine, formed during the Little Ice Age, is located within the proglacial area at the southern front of Arklio Glacier, Ellesmere Island, Canada. We established two line-transects on this moraine to quantify microhabitats for vascular species. Microsites favorable for plants were concave depressions, probably increasing the likelihood of colonization. At microsites distant from stable boulders, which probably protect seeds/seedlings from wind desiccation, plant colonization was less likely. Furthermore, favorable microhabitat properties differed depending on topographical location within the moraine, suggesting that, even within a single moraine, microhabitats favorable for plant colonization are heterogeneously-distributed. This moraine was characterized by two major pioneer species, Epilobium latifolium and Salix arctica. Their species-specific microhabitat requirements highlight the importance of biotic factors in colonization processes. Favorable sites for plants are generally distributed at random in harsh environments. However, we showed that initial plant colonization is a deterministic process rather than random, indicating the possibility of non-stochastic processes even during the early phase of ecosystem development in High-Arctic ecosystems.  相似文献   
139.
A thermal diffusive process in the Earth's core is principally enhanced by small-scale flows that are highly anisotropic because of the Earth's rapid rotation and a strong magnetic field. This means that a thermal eddy diffusivity should not be a scalar but a tensor. The effect of such anisotropic tensor diffusivity, which is to be prescribed, on dynamics in the Earth's core is investigated through numerical simulations of magnetoconvection in a rapidly rotating system. A certain degree of anisotropy has an insignificant effect on the character, like kinetic and magnetic energies, of magnetoconvection in a small region with periodic boundaries in the three directions. However, in a region with top and bottom rigid boundary surfaces, kinetic and magnetic energies of magnetoconvection can be altered by the same degree of anisotropy. This implies that anisotropic tensor diffusivity affects on dynamics in the core, in particular near the boundary surfaces.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号