首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   9篇
  国内免费   9篇
大气科学   16篇
地球物理   43篇
地质学   61篇
海洋学   56篇
天文学   20篇
自然地理   12篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   9篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   4篇
  2013年   9篇
  2012年   12篇
  2011年   11篇
  2010年   8篇
  2009年   14篇
  2008年   6篇
  2007年   12篇
  2006年   7篇
  2005年   3篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   5篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   8篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
111.
The title telescope — in operation since 1982 — gives a surface accuracy of better than 0.2 mm (r.m.s.), with an aperture efficiency of about 25% at 115 GHz. A 5-element interferometer is at final adjustment stage. Observations of proto-stellar objects, extragalactic objects, and spectral lines are briefly described.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   
112.
113.
Effects of ground water exchange on the hydrology and ecology of surface water   总被引:11,自引:0,他引:11  
Ground water exchange affects the ecology of surface water by sustaining stream base flow and moderating water-level fluctuations of ground water-fed lakes. It also provides stable-temperature habitats and supplies nutrients and inorganic ions. Ground water input of nutrients can even determine the trophic status of lakes and the distribution of macrophytes. In streams the mixing of ground water and surface water in shallow channel and bankside sediments creates a unique environment called the hyporheic zone, an important component of the lotic ecosystem. Localized areas of high ground water discharge in streams provide thermal refugia for fish. Ground water also provides moisture to riparian vegetation, which in turn supplies organic matter to streams and enhances bank resistance to erosion. As hydrologists and ecologists interact to understand the impact of ground water on aquatic ecology, a new research field called "ecohydrology" is emerging.  相似文献   
114.
115.
Element partitioning between olivine and silicate melt has been investigated at pressures 1–14 GPa, by using a 6–8 type multi-anvil high pressure apparatus. In order to observe systematics in the partitioning of trivalent ions, Li was added to the starting materials in order to increase the concentration of trivalent ions in olivine. With increasing pressure, it was found that partition coefficients of most of the elements gradually decreased. Trivalent ions generally showed parabolic pattern on partition coefficient — ionic radius diagram. When pyrolite-like material was used as the starting material, partition coefficient of Al, DAl, gradually increased with increase in pressure while the partition coefficients of the other elements decreased, and the DAl deviated from the parabolic pattern of other trivalent ions. The deviation of DAl from the D pattern of the other trivalent ions was also found when olivine was employed as main component of the starting material. This result may be ascribed to the compositional change of coexisting silicate melt with increase in pressure.  相似文献   
116.
With increasing pressure, MnSiO3 rhodonite stable at atmospheric pressure transforms to pyroxmangite, then to clinopyroxene and further to tetragonal garnet, which finally decomposes into MnO (rocksalt) plus SiO2 (stishovite). High temperature solution calorimetry of synthetic rhodonite, clinopyroxene and garnet forms of MnSiO3 was used to measure the enthalpies of these transitions. ΔH 974 0 for the rhodonite-clinopyroxene and ΔH 298 0 for the clinopyroxene-garnet transition are 520±490 and 8,270±590 cal/mol, respectively. The published data on the enthalpy of the rhodonite-pyroxmangite transition, phase equilibrium boundaries, compressibility and thermal expansion data are used to calculate entropy changes for the transitions. The enthalpy, entropy and volume changes are very small for all the transitions among rhodonite, pyroxmangite and clinopyroxene. The calculated boundary for the clinopyroxene-garnet transition is consistent with the published experimental results. The pyroxene-garnet transition in several materials, including MnSiO3, is characterized by a relatively small negative entropy change and large volume decrease, resulting in a small positiveP – T slope. The disproportionation of MnSiO3 garnet to MnO plus stishovite and of Mn2SiO4 olivine to garnet plus MnO are calculated to occur at about 17–18 and 14–15 GPa, respectively, at 1,000–1,500 K.  相似文献   
117.
Wei  Lin  Masaki  Enami 《Island Arc》2006,15(4):483-502
Abstract Jadeite‐bearing eclogites and associated blueschists locally crop out in a greenschist facies area at Kuldkourla, near the Akeyazhi River in the western Chinese Tianshan region, northwestern China. Garnet in these metamorphic rocks shows prograde zoning with increasing Mg and decreasing Mn from the crystal center towards the rim, and is divided into Ca‐poor/Fe‐rich core and Ca‐rich/Fe‐poor mantle parts. The garnet cores include the assemblages of (i) jadeite/omphacite (Xjd = 0.34–0.96) + barroisite/taramite; and (ii) omphacite + barroisite/pargasite, with paragonite, epidote, rutile and quartz as major phases with rare albite. The garnet mantles rarely contain inclusions of omphacite, glaucophane, epidote, rutile and quartz. Major matrix phases of the pre‐exhumation stage are omphacite, glaucophane, paragonite, rutile and quartz. These mineral parageneses give pressure (P)‐temperature (T) conditions of 0.9 GPa/390°C?1.4 GPa/560°C for the stage of the garnet core formation, 1.8 GPa/520°C for the stage of the garnet mantle formation, and 2.2 GPa/495°C‐2.4 GPa/535°C for the peak eclogite facies assemblage in the matrix. The estimated P‐T conditions and continuous changes of mineral parageneses imply a counterclockwise P‐T path which is a combination of (i) an early prograde stage of high‐pressure/low‐temperature (HP/LT) blueschist facies and/or LP/LT eclogite facies; (ii) a later prograde stage involving compression with minimal heating; and (iii) a climax‐of‐subduction stage characterized by a slight decrease of temperature with increasing pressure. The negative dP/dT of the latest subduction stage is possibly a record of the following events after a continuous subduction and ridge approach: (i) material migration within the upper part of the subducting slab, which has an inverse thermal gradient caused by ductile flow and/or slab break during subduction; and/or (ii) temporary cooling of the wedge mantle–slab interface by continuous subduction of a relatively cold slab following subduction of a hotter ridge.  相似文献   
118.
119.
Chang-Qing  Zheng  Takenori  Kato  Masaki  Enami  Xue-Chun  Xu 《Island Arc》2007,16(4):598-604
Abstract   The chemical Th-U-total Pb isochron method (CHIME) has been applied to determine the ages of monazite grains from metasediments of greenscshist-amphibolite facies in the Altai orogen, northwest China. The area of distribution of these metamorphic rocks is divided into the Permian (261–268 Ma) central-western and Devonian (377–382 Ma) eastern units on the basis of their metamorphic ages. The Devonian CHIME ages are consistent with the Pb–Pb ages of granitoid in the eastern unit, and support the idea that emplacement of the granitoids was synchronous with regional metamorphism at deep levels. The Permian metamorphic ages (the present study) and igneous ages previously reported from the central-western unit can be interpreted in terms of subduction of crustal material and oceanic plate, and rapid exhumation.  相似文献   
120.
Integrated colors of M3, M5, M13, and M92 are calculated from the luminosity function, the color-magnitude diagram, and the two-color diagram to compare them with observed ones. The results show good agreements for M3, M13, and M92 and the discrepancy for M5. Possible causes for this discrepancy are discussed.To study the way in which integrated colors are affected by changes in the distribution of stars in the color-magnitude diagram, we calculate the integrated colors by taking into account changes in the distribution of horizontal branch stars and in the ratio of the number of horizontal branch stars to that of red giant branch stars. The result shows that (B-V) color varies within the range of about 0.1 mag with changes in the distribution of horizontal branch stars, implying that the cluster with a well-developed blue horizontal branch has bluer intrinsic integrated (B-V) color than that with yellow one. This tendency is compared with observation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号