首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24902篇
  免费   203篇
  国内免费   922篇
测绘学   1414篇
大气科学   2025篇
地球物理   4665篇
地质学   11758篇
海洋学   1056篇
天文学   1667篇
综合类   2163篇
自然地理   1279篇
  2023年   3篇
  2022年   2篇
  2021年   6篇
  2020年   7篇
  2019年   12篇
  2018年   4773篇
  2017年   4045篇
  2016年   2596篇
  2015年   246篇
  2014年   92篇
  2013年   70篇
  2012年   1003篇
  2011年   2750篇
  2010年   2042篇
  2009年   2341篇
  2008年   1912篇
  2007年   2376篇
  2006年   69篇
  2005年   214篇
  2004年   419篇
  2003年   439篇
  2002年   267篇
  2001年   55篇
  2000年   59篇
  1999年   26篇
  1998年   31篇
  1997年   6篇
  1996年   8篇
  1995年   8篇
  1993年   7篇
  1992年   5篇
  1991年   2篇
  1990年   10篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   11篇
  1984年   9篇
  1983年   4篇
  1982年   5篇
  1981年   27篇
  1980年   23篇
  1979年   5篇
  1978年   5篇
  1977年   5篇
  1976年   8篇
  1975年   3篇
  1968年   2篇
  1885年   1篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
131.
Two large-scale “in situ” demonstration experiments and their instrumentation are described. The first test (FEBEX Experiment) involves the hydration of a compacted bentonite barrier under the combined effect of an inner source of heat and an outer water flow from the confining saturated granite rock. In the second case, the progressive de-saturation of Opalinus clay induced by maintained ventilation of an unlined tunnel is analyzed. The paper shows the performance of different sensors (capacitive cells, psychrometers, TDR’s) and a comparison of fill behaviour with modelling results. The long term performance of some instruments could also be evaluated specially in the case of FEBEX test. Capacitive sensors provide relative humidity data during long transient periods characterised by very large variations of suction within the bentonite.  相似文献   
132.
Water column concentrations of total suspended solids (TSS), particulate organic carbon (POC) and particulate nitrogen (PN) were measured at three different depths in four different locations bracketing the estuarine turbidity maximum (ETM) along the main channel of a temperate riverine estuary (Winyah Bay, South Carolina, USA). Measurements were carried out over full tidal cycle (over 24 h). Salinity, temperature, current magnitude and direction were also monitored at the same time throughout the water column. Tidally averaged net fluxes of salt, TSS, POC and PN were calculated by combining the current measurements with the concentration data. Under the extreme low river discharge conditions that characterized the study period, net landward fluxes of salt were measured in the lower part of the study area, suggesting that the landward transport through the main channel of the estuary was probably balanced by export out through the sides. In contrast, the net fluxes of salt in the upper reaches of the study area were near zero, indicating a closed salt balance in this part of the estuary. In contrast to salt, the net fluxes of TSS, POC and PN in the deeper parts of the water column were consistently landward at all four sites in Winyah Bay indicating the non-conservative behavior of particulate components and their active transport up the estuary in the region around the ETM.The carbon contents (%POC), carbon:nitrogen ratios (org[C:N]a) and stable carbon isotopic compositions (δ13CPOC) of the suspended particles varied significantly with depth, location and tidal stage. Tidally averaged compositions showed a significant increase up the estuary in the %POC and org[C:N]a values of suspended particles consistent with the preferential landward transport of carbon-rich particles with higher vascular plant debris content. The combination of tidal resuspension and flood-dominated flow appeared to be responsible for the hydrodynamic sorting of particles along the estuary that resulted in denser, organic-poor particles being transported landward less efficiently. The elemental and isotopic compositions indicated that vascular C3 plants and estuarine algae were the major sources of the particulate organic matter of all the samples, without any significant contributions from salt marsh C4 vegetation (Spartina alterniflora) and/or marine phytoplankton.  相似文献   
133.
Bathymetric, 9.5-kHz long-range sidescan sonar (OKEAN), seismic reflection and sediment-core data are used in the analysis of two tectonic troughs south of Crete, Eastern Mediterranean Sea. Here, up to 1.2 s two-way travel time (TWTT) of strata have accumulated since the Middle Miocene in association with extension in the South Aegean region. The study area comprises >100-km- long by >25-km-wide basins filled by sediments subdivided into two seismic units: (1) an upper Unit 1 deposited in sub-basins which follow the present-day configuration of the southern Cretan margin; (2) a basal Unit 2, more than 500 ms (TWTT) thick, accumulated in deeper half-graben/grabens distinct from the present-day depocentres. Both units overlap a locally stratified Unit 3 comprising the pre-Neogene core complex of Crete and Gavdos. In this work, the interpreted seismic units are correlated with the onshore stratigraphy, demonstrating that denudation processes occurring on Crete and Gavdos in response to major tectonic events have been responsible for high sedimentation rates along the proximal southern Cretan margin. Consequently, topographically confined sedimentary units have been deposited south of Crete in the last 12 Ma, including turbidites and other mass-flow deposits fed by evolving transverse and axial channel systems. Surface processes controlling facies distribution include the direct inflow of sediment from alluvial-fan systems and incising mountain rivers onto the Cretan slope, where significant sediment instability processes occur at present. In this setting, seismic profiles reveal eight different types of stratigraphic contacts on basin-margin highs, and basinal areas show evidence of halokinesis and/or fluid escape. The acquired data also show that significant changes to the margin’s configuration occurred in association with the post-Alpine tectonic and eustatic episodes affecting the Eastern Mediterranean.  相似文献   
134.
Long-term exposure of animals to sub-lethal doses of toxicants such as benzene (B) and dimethylnaphthalene (DMN) may result in subtle changes in their physiology and biochemistry. In crustaceans such changes include decreased rate of limb regeneration, extended time to molt and decreased growth increment at molt.1,2 These processes depend upon an adequate supply of stored nutrients in the tissues and appropriate release of neuroendocrine substances from the central nervous system.3,4 We are examining the effects of sub-lethal doses of B and DMN on osmotic and ionic regulation and on nutrient storage in the blue crab, Callinectes sapidus, and the green crab, Carcinus maenas. Disturbances in these physiological processes may reflect alterations in neuroendocrine functions brought about by the presence of toxicants. We find that exposure of C. maenas to B or DMN, followed by transfer to a dilute medium, results in impaired osmoregulatory capacity, while addition of these compounds to a dilute medium to which the animal is already acclimated does not affect their regulatory ability. Storage of carbohydrate in the midgut gland (hepatopancreas) is decreased by B or DMN, while the accessory storage tissues (gill, muscle) are not significantly affected.  相似文献   
135.
This paper examines the mechanism controlling the short time-scale variation of sea ice cover over the Southern Ocean. Sea ice concentration and ice velocity datasets derived from images of the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) are employed to reveal this mechanism. The contribution of both dynamic and thermodynamic processes to the change in ice edge location is examined by comparing the meridional velocity of ice edge displacement and sea ice drift. In the winter expansion phase, the thermodynamic process of new ice production off the ice edge plays an important role in daily advances of ice cover, whereas daily retreats are mostly due to southward ice drift. On the other hand, both advance and retreat of ice edges in the spring contraction phase are mostly caused by the dynamic process of the ice drift. Based on the above mechanism and the linear relation between the degree of ice production at the ice edge and northward wind speed, the seasonal advance of ice cover can be roughly reproduced using the meridional velocity of ice drift at the ice edge.  相似文献   
136.
Two distinct series of slumps deform the upper part of the sedimentary sequence along the continental margin of the Levant. One series is found along the base of the continental slope, where it overlies the disrupted eastern edge of the Messinian evaporites. The second series of slumps transects the continental margin from the shelf break to the Levant Basin. It seemed that the two series were triggered by two unrelated, though contemporaneous, processes. The shore-parallel slumps were initiated by basinwards flow of the Messinian salt, that carried along the overlying Plio-Quaternary sediments. Seawater that percolated along the detachment faults dissolved the underlying salt to form distinctly disrupted structures. The slope-normal slumps are located on top of large canyons that cut into the pre-Messinian sedimentary rocks. A layer of salt is found in the canyons, and the Plio-Quaternary sediments were deposited on that layer. The slumps are bounded by large, NW-trending faults where post-Messinian faulted offset was measured. We presume that the flow of the salt in the canyons also drives the slope-normal slumps. Thus thin-skinned halokynetic processes generated the composite post-Tortonian structural patterns of the Levant margin. The Phoenician Structures are a prime example of the collapse of a distal continental margin due to the dissolution of a massive salt layer.  相似文献   
137.
138.
Seasonal evolution of surface mixed layer in the Northern Arabian Sea (NAS) between 17° N–20.5° N and 59° E-69° E was observed by using Argo float daily data for about 9 months, from April 2002 through December 2002. Results showed that during April - May mixed layer shoaled due to light winds, clear sky and intense solar insolation. Sea surface temperature (SST) rose by 2.3 °C and ocean gained an average of 99.8 Wm−2. Mixed layer reached maximum depth of about 71 m during June - September owing to strong winds and cloudy skies. Ocean gained abnormally low ∼18 Wm−2 and SST dropped by 3.4 °C. During the inter monsoon period, October, mixed layer shoaled and maintained a depth of 20 to 30 m. November - December was accompanied by moderate winds, dropping of SST by 1.5 °C and ocean lost an average of 52.5 Wm−2. Mixed layer deepened gradually reaching a maximum of 62 m in December. Analysis of surface fluxes and winds suggested that winds and fluxes are the dominating factors causing deepening of mixed layer during summer and winter monsoon periods respectively. Relatively high correlation between MLD, net heat flux and wind speed revealed that short term variability of MLD coincided well with short term variability of surface forcing.  相似文献   
139.
Spatial and Temporal Variations of Sound Speed at the PN Section   总被引:3,自引:0,他引:3  
Gridded sound speed data were calculated using Del Grosso's formulation from the temperature and salinity data at the PN section in the East China Sea covering 92 cruises between February 1978 and October 2000. The vertical gradients of sound speed are mainly related to the seasonal variations, and the strong horizontal gradients are mainly related to the Kuroshio and the upwelling. The standard deviations show that great variations of sound speed exist in the upper layer and in the slope zone. Empirical orthogonal function analysis shows that contributions of surface heating and the Kuroshio to sound speed variance are almost equivalent. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
140.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号