首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4541篇
  免费   191篇
  国内免费   49篇
测绘学   99篇
大气科学   382篇
地球物理   952篇
地质学   1688篇
海洋学   330篇
天文学   874篇
综合类   15篇
自然地理   441篇
  2021年   44篇
  2020年   70篇
  2019年   94篇
  2018年   107篇
  2017年   130篇
  2016年   138篇
  2015年   118篇
  2014年   139篇
  2013年   230篇
  2012年   131篇
  2011年   195篇
  2010年   171篇
  2009年   252篇
  2008年   220篇
  2007年   206篇
  2006年   195篇
  2005年   176篇
  2004年   181篇
  2003年   141篇
  2002年   142篇
  2001年   105篇
  2000年   96篇
  1999年   76篇
  1998年   81篇
  1997年   71篇
  1996年   72篇
  1995年   62篇
  1994年   48篇
  1993年   47篇
  1992年   39篇
  1991年   53篇
  1990年   38篇
  1989年   40篇
  1988年   46篇
  1987年   55篇
  1986年   47篇
  1985年   52篇
  1984年   42篇
  1983年   46篇
  1982年   53篇
  1981年   56篇
  1980年   53篇
  1979年   34篇
  1978年   26篇
  1977年   32篇
  1976年   34篇
  1975年   26篇
  1974年   38篇
  1973年   33篇
  1971年   25篇
排序方式: 共有4781条查询结果,搜索用时 171 毫秒
961.
Bulk analyses of 157 lithic fragments of igneous origin and analyses of their constituent minerals (plagioclase, pyroxene, olivine, Mg-Al spinel, chromite, ilmenite, armalcolite, baddeleyite, zirkelite, K-feldspar, interstitial glass high in SiO2 and K2O) have been used to characterize the lunar highland rock suites at the Luna 20 site. The predominant suite is composed of ANT (anorthositic-noritic-troctolitic) rocks, as found at previous Apollo and Luna sites. This suite consists of an early cumulate member, spinel troctolite, and later cumulate rocks which are gradational from anorthosite to noritic and troctolitic anorthosite to anorthositic norite and troctolite; anorthositic norite is the most abundant rock type and its composition is close to the average composition for the highland rocks at this site. Spinel troctolite is a distinctive member of this suite and is characterized by the presence of Mg-Al spinel, magnesian olivine (average, Fo83), and plagioclase. High-alumina basalt with low alkali content is another important rock type and melt of this composition may be parental to the cumulate ANT suite. Alkalic high-alumina basalt (KREEP) was not found in our sample, but may be genetically related to the ANT suite in that it may have formed by partial melting of rocks similar to those of the ANT suite. Fractional crystallization of low alkali, high-alumina basalt probably cannot produce alkalic high-alumina basalt because the enrichment in KREEP component is many times greater than the simultaneous change in major element components. Formation of alkalic high-alumina basalt by mechanical mixing of ANT rocks with very KREEP-rich components is not likely because the high-alumina basalt suite falls on a cotectic in the anorthiteolivine-silica system. Mare basalts may also be genetically related in that they may have been derived by remelting of rocks formed from residual liquids of fractional crystallization of parental low-alkali, high-alumina basalt, plus mafic cumulate crystals; the resultant melt would have a negative Eu anomaly and high FeMg and pyroxeneplagioclase ratios.  相似文献   
962.
Tourmaline-rich rocks are common in the lowgrade, interior portions of the Barberton greenstone belt of South Africa, where shallow-marine sediments and underlying altered basaltic and komatiitic lavas contain up to 50% tourmaline. The presence of tourmaline-bearing rip-up clasts, intraformational tourmalinite pebbles, and tourmaline-coated grains indicates that boron mineralization was a low-temperature, surficial process. The association of these lithologies with stromatolites, evaporites, and shallow-water sedimentary structures and the virtual absence of tourmaline in correlative deep-water facies rocks in the greenstone bels strengthens this model.Five tourmaline-bearing lithologic groups (basalts, komatiites, evaporite-bearing sediments, stromatolitic sediments, and quartz veins) are distinguished based on field, petrographic, and geochemical criteria. Individual tourmaline crystals within these lithologies show internal chemical and textural variations that reflect continued growth through intervals of change in bulk-rock and fluid composition accompanying one or more metasomatic events. Large single-crystal variations exist in Fe/Mg, Al/Fe, and alkali-site vacancies. A wide range in tourmaline composition exists in rocks altered from similar protoliths, but tourmalines in sediments and lavas have similar compositional variations. Boron-isotope analysis of the tourmalines suggest that the boron enrichment in these rocks has a major marine evaporitic component. Sediments with gypsum pseudomorphs and lavas altered at low temperatures by shallow-level brines have the highest 11B values (+2.2 to-1.9); lower 11B values of late quartz veins (-3.7 to-5.7) reflect intermediate temperature, hydrothermal remobilization of evaporitic boron. The 11B values of tourmaline-rich stromatolitic sediments (-9.8 and-10.5) are consistent with two-stage boron enrichment, in which earlier marine evaporitic boron was hydrothermally remobilized and vented in shallow-marine or subaerial sites, mineralizing algal stromatolites. The stromatolite-forming algae preferentially may have lived near the sites of hydrothermal discharge in Archean times.  相似文献   
963.
<正>1.Overview In July 2018, the Antarctic community came together to meet at the 13th Workshop on Antarctic Meteorology and Climate (WAMC) in Madison, Wisconsin, USA (Fig. 1); and in the following year in June 2019, the 14th WAMC was held in  相似文献   
964.
There is increasing interest in the magnitude of the flow of freshwater to the Arctic Ocean due to its impacts on the biogeophysical and socio‐economic systems in the north and its influence on global climate. This study examines freshwater flow based on a dataset of 72 rivers that either directly or indirectly contribute flow to the Arctic Ocean or reflect the hydrologic regime of areas contributing flow to the Arctic Ocean. Annual streamflow for the 72 rivers is categorized as to the nature and location of the contribution to the Arctic Ocean, and composite series of annual flows are determined for each category for the period 1975 to 2015. A trend analysis is then conducted for the annual discharge series assembled for each category. The results reveal a general increase in freshwater flow to the Arctic Ocean with this increase being more prominent from the Eurasian rivers than from the North American rivers. A comparison with trends obtained from an earlier study ending in 2000 indicates similar trend response from the Eurasian rivers, but dramatic differences from some of the North American rivers. A total annual discharge increase of 8.7 km3/y/y is found, with an annual discharge increase of 5.8 km3/y/y observed for the rivers directly flowing to the Arctic Ocean. The influence of annual or seasonal climate oscillation indices on annual discharge series is also assessed. Several river categories are found to have significant correlations with the Arctic Oscillation, the North Atlantic Oscillation, or the Pacific Decadal Oscillation. However, no significant association with climate indices is found for the river categories leading to the largest freshwater contribution to the Arctic Ocean.  相似文献   
965.
ABSTRACT

Agent-based models (ABM) are used to represent a variety of complex systems by simulating the local interactions between system components from which observable spatial patterns at the system-level emerge. Thus, the degree to which these interactions are represented correctly must be evaluated. Networks can be used to discretely represent and quantify interactions between system components and the emergent system structure. Therefore, the main objective of this study is to develop and implement a novel validation approach called the NEtworks for ABM Testing (NEAT) that integrates geographic information science, ABM approaches, and spatial network representations to simulate complex systems as measurable and dynamic spatial networks. The simulated spatial network structures are measured using graph theory and compared with empirical regularities of observed real networks. The approach is implemented to validate a theoretical ABM representing the spread of influenza in the City of Vancouver, Canada. Results demonstrate that the NEAT approach can validate whether the internal model processes are represented realistically, thus better enabling the use of ABMs in decision-making processes.  相似文献   
966.
Considering heterogeneity in porous media pore size and connectivity is essential to predicting reactive solute transport across interfaces. However, exchange with less‐mobile porosity is rarely considered in surface water/groundwater recharge studies. Previous research indicates that a combination of pore‐fluid sampling and geoelectrical measurements can be used to quantify less‐mobile porosity exchange dynamics using the time‐varying relation between fluid and bulk electrical conductivity. For this study, we use macro‐scale (10 s of cm) advection–dispersion solute transport models linked with electrical conduction in COMSOL Multiphysics to explore less‐mobile porosity dynamics in two different types of observed sediment water interface porous media. Modeled sediment textures contrast from strongly layered streambed deposits to poorly sorted lakebed sands and cobbles. During simulated ionic tracer perturbations, a lag between fluid and bulk electrical conductivity, and the resultant hysteresis, is observed for all simulations indicating differential loading of pore spaces with tracer. Less‐mobile exchange parameters are determined graphically from these tracer time series data without the need for inverse numerical model simulation. In both sediment types, effective less‐mobile porosity exchange parameters are variable in response to changes in flow direction and fluid flux. These observed flow‐dependent effects directly impact local less‐mobile residence times and associated contact time for biogeochemical reaction. The simulations indicate that for the sediment textures explored here, less‐mobile porosity exchange is dominated by variable rates of advection through the domain, rather than diffusion of solute, for typical low‐to‐moderate rate (approximately 3–40 cm/day) hyporheic fluid fluxes. Overall, our model‐based results show that less‐mobile porosity may be expected in a range of natural hyporheic sediments and that changes in flowpath orientation and magnitude will impact less‐mobile exchange parameters. These temporal dynamics can be assessed with the geoelectrical experimental tracer method applied at laboratory and field scales.  相似文献   
967.
The Harletz loess‐palaeosol sequence is located in northwestern Bulgaria and represents an important link between well‐studied loess sequences in eastern Romania and further sites to the west of the Carpathians (e.g. Serbia and Hungary). The aim of this study was to establish a chronostratigraphy of the deposits, using various methods of luminescence dating, together with basic stratigraphical field observations as well as magnetic properties. Luminescence dating was carried out using the quartz fine grain fraction and a SAR protocol, and the feldspar coarse grain fraction, applying the MET‐pIRIR protocol. Due to underestimation of the quartz fine grain fraction in the lower parts of the sequence, the resulting chronology is mainly based on the feldspar ages, which are derived from the stimulation temperature at 150 °C. A comparison with nearby sequences from Serbia, Hungary and Romania, and interpretations obtained through the stratigraphical and sedimentological signature of the sequence, supports the established chronology. Our data suggest that the prominent palaeosol (soil complex) in the upper quarter of the sequence was formed during MIS 5. It would follow that large parts of the Last Glacial loess overlying this palaeosol were probably eroded, and that the thick loess accumulation underlying this soil complex can be allocated to the penultimate glacial (MIS 6). A prominent MIS 6 tephra, which has been reported from other sequences in the area, is also present at Harletz.  相似文献   
968.
We present a high‐resolution reconstruction of the vegetation and climate dynamics during the penultimate interglacial, corresponding with Marine Isotope Stage (MIS) 7, based on detailed palynological analyses of lacustrine sediments from Lake El'gygytgyn, northeastern Siberia. The analysed sediments were deposited between 246 and 181 ka ago (late MIS 8 to early MIS 6.6). The interglacial vegetation was characterized by herb and shrub (mainly alder and birch) dominated plant communities. Pollen‐based biome reconstruction shows a dominance of the tundra (TUND) biome, thus indicating rather open vegetation. Warmer intervals (MIS 7.5, 7.3 and 7.1) were marked by an increase in the cold deciduous forest (CLDE) biome scores and a synchronous decrease in the cold steppe (STEP) biome scores. The thermal maximum occurred during MIS 7.1, as indicated by the highest CLDE biome scores occurring in this period, and lasted ~10 ka, possibly favoured by the high precession‐related summer insolation and the legacy of the preceding mild and dry stadial (MIS 7.2). In contrast, MIS 7.3 and 7.5 were characterized by shorter durations (~4 ka) and lower summer temperatures. The preceding cold glacial and stadial (MIS 8 and 7.4, respectively) might have led to an extensive distribution of permafrost that hindered vegetation development during the subsequent warm intervals. MIS 7.4 and 6.6 were cold and wet, probably triggered by low obliquity values and coevally low precession‐related summer insolation. As a result, these periods were marked by significantly reduced summer temperatures and an enhanced snow‐ice albedo feedback. The obtained reconstructions provide potential scenarios for future climate changes and allow a better understanding of the relationship between vegetation, climate and external/internal forcings in the high latitudes.  相似文献   
969.
The Holocene, which currently spans ~11 700 years, is the shortest series/epoch within the geological time scale (GTS), yet it contains a rich archive of evidence in stratigraphical contexts that are frequently continuous and often preserved at high levels of resolution. On 14 June 2018, the Executive Committee of the International Union of Geological Sciences formally ratified a proposal to subdivide the Holocene into three stages/ages, along with their equivalent subseries/subepochs, each anchored by a Global boundary Stratotype Section and Point (GSSP). The new stages are the Greenlandian (Lower/Early Holocene Subseries/Subepoch) with its GSSP in the Greenland NGRIP2 ice core and dated at 11 700 a b2k (before 2000 CE); the Northgrippian (Middle Holocene Subseries/Subepoch) with its GSSP in the Greenland NGRIP1 ice core and dated at 8236 a b2k; and the Meghalayan (Upper/Late Holocene Subseries/Subepoch) with its GSSP in a speleothem from Mawmluh Cave, north‐eastern India, with a date of 4250 a b2k. We explain the nomenclature of the new divisions, describe the procedures involved in the ratification process, designate auxiliary stratotypes to support the GSSPs and consider the implications of the subdivision for defining the Anthropocene as a new unit within the GTS.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号