首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   586篇
  免费   31篇
  国内免费   2篇
测绘学   36篇
大气科学   45篇
地球物理   159篇
地质学   214篇
海洋学   31篇
天文学   90篇
综合类   3篇
自然地理   41篇
  2023年   3篇
  2022年   7篇
  2021年   19篇
  2020年   12篇
  2019年   16篇
  2018年   28篇
  2017年   26篇
  2016年   25篇
  2015年   27篇
  2014年   27篇
  2013年   33篇
  2012年   23篇
  2011年   31篇
  2010年   27篇
  2009年   33篇
  2008年   29篇
  2007年   29篇
  2006年   32篇
  2005年   20篇
  2004年   18篇
  2003年   9篇
  2002年   20篇
  2001年   12篇
  2000年   8篇
  1999年   8篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1986年   4篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   7篇
  1979年   3篇
  1978年   5篇
  1976年   4篇
  1975年   4篇
  1974年   3篇
  1971年   4篇
  1967年   3篇
  1966年   2篇
  1965年   2篇
  1963年   3篇
  1962年   3篇
  1959年   2篇
  1958年   2篇
  1957年   2篇
排序方式: 共有619条查询结果,搜索用时 0 毫秒
71.
Aplite dikes intruding the Proterozoic 1.42(±?3) Ga Longs Peak-St. Vrain Silver Plume-type peraluminous granite near Jamestown, Colorado, contain F, P, and rare earth element (REE)-rich globular segregations, with 40–46% REE, 3.7–4.8 wt% P2O5, and 5–8 wt% F. A combination of textural features and geochemical data suggest that the aplite and REE-rich globular segregations co-existed as two co-genetic liquids prior to their crystallization, and we propose that they are formed by silicate–fluoride?+?phosphate (+?S?+?CO2) melt immiscibility following ascent, cooling, and decompression of what was initially a single homogeneous magma that intruded the granite. The REE distribution coefficients between the silica-rich aplites and REE-rich segregations are in good agreement with experimentally determined distribution coefficients for immiscible silicate–fluoride?+?phosphate melts. Although monazite-(Ce) and uraninite U–Th–Pb microprobe ages for the segregations yield 1.420(±?25) and 1.442(±?8) Ga, respectively, thus suggesting a co-genetic relationship with their host granite, εNd1.42Ga values for the granites and related granitic pegmatites range from ??3.3 to ??4.7 (average ??3.9), and differ from the values for both the aplites and REE-rich segregations, which range from ??1.0 to ??2.2 (average ??1.6). Furthermore, the granites and pegmatites have (La/Yb)N <50 with significant negative Eu anomalies, which contrast with higher (La/Yb)N >100 and absence of an Eu anomaly in both the aplites and segregations. These data are consistent with the aplite dikes and the REE-rich segregations they contain being co-genetic, but derived from a source different from that of the granite. The higher εNd1.42Ga values for the aplites and REE-rich segregations suggest that the magma from which they separated had a more mafic and deeper, dryer and hotter source in the lower crust or upper mantle compared to the quartzo-feldspathic upper crustal source proposed for the Longs Peak-St. Vrain granite.  相似文献   
72.
High mountainous areas are geomorphologically active environments which are strongly shaped by redistribution of sediments and soils. With the projected climate warming in the twenty-first century and the continued retreat of glaciers, the area of newly exposed, highly erodible sediments and soils will increase. This presents a need to better understand and quantify erosion processes in young mountainous soils, as an increase in erodibility could threaten human infrastructure (i.e. hydroelectric power, tourist installations and settlements). While soil development is increasingly well understood and quantified, a coupling to soil erosion rates is still missing. The aim of this study was, therefore, to assess how soil erosion rates change with surface age. We investigated two moraine chronosequences in the Swiss Alps: one in the siliceous periglacial area of Steingletscher (Sustenpass), with soils ranging from 30 a to 10 ka, and the other in the calcareous periglacial area of Griessgletscher (Klausenpass) with surfaces ranging from age of 110 a to 13.5 ka. We quantified the erosion rates using the 239+240Pu fallout radionuclides and compared them to physical and chemical soil properties and the vegetation coverage. We found no significant differences between the two parent materials. At both chronosequences, the erosion rates were highest in the young soils (on average 5−10 t ha-1 a-1 soil loss). Erosion rates decreased markedly after 3−5 ka of soil development (on average 1−2.5 t ha-1 a-1 soil loss) to reach a more or less stable situation after 10−14 ka (on average 0.3–2 t ha-1 a-1). Climate change not only causes glacier retreat, but also increased sediment dynamics. Depending on the relief and vegetational development, it takes up to at least 10 ka to reach soil stability. The establishment of a closed vegetation cover with dense root networks seems to be the controlling factor in the reduction of soil erodibility. © 2020 John Wiley & Sons, Ltd.  相似文献   
73.
The recent detection of very-high-energy (GeV – TeV) γ-ray emission from the Galactic black-hole candidate and microquasar LS 5039 has sparked renewed interest in jet models for the high-energy emission in those objects. In this work, we have focused on models in which the high-energy emission results from synchrotron and Compton emission by relativistic electrons in the jet (leptonic jet models). Particular attention has been paid to a possible orbital modulation of the high-energy emission due to azimuthal asymmetries caused by the presence of the companion star. Both orbital-phase dependentγγ absorption and Compton scattering of optical/UV photons from the companion star may lead to an orbital modulation of the gamma-ray emission. We make specific predictions which should be testable with refined data from HESS and the upcoming GLAST mission.  相似文献   
74.
The identification of potential recharge areas and estimation of recharge rates to the confined semi-fossil Ohangwena II Aquifer (KOH-2) is crucial for its future sustainable use. The KOH-2 is located within the endorheic transboundary Cuvelai-Etosha-Basin (CEB), shared by Angola and Namibia. The main objective was the development of a strategy to tackle the problem of data scarcity, which is a well-known problem in semi-arid regions. In a first step, conceptual geological cross sections were created to illustrate the possible geological setting of the system. Furthermore, groundwater travel times were estimated by simple hydraulic calculations. A two-dimensional numerical groundwater model was set up to analyze flow patterns and potential recharge zones. The model was optimized against local observations of hydraulic heads and groundwater age. The sensitivity of the model against different boundary conditions and internal structures was tested. Parameter uncertainty and recharge rates were estimated. Results indicate that groundwater recharge to the KOH-2 mainly occurs from the Angolan Highlands in the northeastern part of the CEB. The sensitivity of the groundwater model to different internal structures is relatively small in comparison to changing boundary conditions in the form of influent or effluent streams. Uncertainty analysis underlined previous results, indicating groundwater recharge originating from the Angolan Highlands. The estimated recharge rates are less than 1% of mean yearly precipitation, which are reasonable for semi-arid regions.  相似文献   
75.
76.
A multi‐method research design based on terrestrial laser scanning, GIS, geophysical prospecting (electrical resistivity tomography, refraction seismics) and sedimentology is applied for the first time to investigate enclosed karst depressions in an integrated way. Fusing multi‐resolution surface and subsurface geodata provides profound insights into the formation, geometry and geomorphologic processes of dolines. The studied landforms, which are located in the Dikti Mountains of East Crete, are shown to be filled by loose sediments of thicknesses of up to 30 m that mainly consist of fine‐grained material overlying solid bedrock at depths below 35 to 45 m. By combining subsurface observations with geomorphometric calculations, local doline genesis can be traced back to initial collapse of fractured bedrock followed by subsequent infilling with colluvials. In order to define crucial methodological requirements and guidelines for data fusion, both the impact of different elevation models and the influence of data resolution are assessed. Surface volumes of depressions derived by the digital surface model are 7–21% higher than the results obtained from the terrain model due to vegetation. Similarly, estimates of infill volume calculated on the basis of geophysical outcomes and elevation data differ by up to 13%. Calculations of the landforms' current volumes (i.e. total surface and subsurface volume), however, are fairly insensitive to raster resolution. Hence, the distinct geomorphologic properties of landforms (e.g. shape, terrain roughness, slope inclination) substantially determine the geomorphometric analysis of both surface and subsurface data. As shown by the findings, data fusion to integrate digital terrain, geophysical and sedimentological datasets of varied resolutions benefits geomorphologic studies and helps provide a comprehensive image of landforms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
77.
78.
79.
Aschwanden  Markus J.  Schmahl  Ed  Team  the RHESSI 《Solar physics》2002,210(1-2):193-211
We describe a forward-fitting method that has been developed to reconstruct hard X-ray images of solar flares from the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), a Fourier imager with rotation-modulated collimators that was launched on 5 February 2002. The forward-fitting method is based on geometric models that represent a spatial map by a superposition of multiple source structures, which are quantified by circular gaussians (4 parameters per source), elliptical gaussians (6 parameters), or curved ellipticals (7 parameters), designed to characterize real solar flare hard X-ray maps with a minimum number of geometric elements. We describe and demonstrate the use of the forward-fitting algorithm. We perform some 500 simulations of rotation-modulated time profiles of the 9 RHESSI detectors, based on single and multiple source structures, and perform their image reconstruction. We quantify the fidelity of the image reconstruction, as function of photon statistics, and the accuracy of retrieved source positions, widths, and fluxes. We outline applications for which the forward-fitting code is most suitable, such as measurements of the energy-dependent altitude of energy loss near the limb, or footpoint separation during flares. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1022469811115  相似文献   
80.
Precambrian fluvial systems, lacking the influence of rooted vegetation, probably were characterised by flashy surface runoff, low bank stability, broad channels with abundant bedload, and faster rates of channel migration; consequently, a braided fluvial style is generally accepted. Pre-vegetational braided river systems, active under highly variable palaeoclimatic conditions, may have been more widespread than are modern, ephemeral dry-land braided systems. Aeolian deflation of fine fluvial detritus does not appear to have been prevalent. With the onset of large cratons by the Neoarchaean–Palaeoproterozoic, very large, perennial braided river systems became typical. The c. 2.06–1.88 Ga Waterberg Group, preserved within a Main and a smaller Middelburg basin on the Kaapvaal craton, was deposited largely by alluvial/braided-fluvial and subordinate palaeo-desert environments, within fault-bounded, possibly pull-apart type depositories.

Palaeohydrological data obtained from earlier work in the Middelburg basin (Wilgerivier Formation) are compared to such data derived from the correlated Blouberg Formation, situated along the NE margin of the Main basin. Within the preserved Blouberg depository, palaeohydrological parameters estimated from clast size and cross-bed set thickness data, exhibit rational changes in their values, either in a down-palaeocurrent direction, or from inferred basin margin to palaeo-basin centre. In both the Wilgerivier and Blouberg Formations, calculated palaeoslope values (derived from two separate formulae) plot within the gap separating typical alluvial fan gradients from those which characterise rivers (cf. [Blair, T.C., McPherson, J.G., 1994. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sediment. Res. A64, 450–489.]). Although it may be argued that such data support possibly unique fluvial styles within the Precambrian, perhaps related to a combination of major global-scale tectono-thermal and atmospheric–palaeoclimatic events, a simpler explanation of these apparently enigmatic palaeoslope values may be pertinent. Of the two possible palaeohydrological formulae for calculating palaeoslope, one provides results close to typical fluvial gradients; the other formula relies on preserved channel-width data. We suggest that the latter will not be reliable due to problematic preservation of original channel-widths within an active braided fluvial system. We thus find no unequivocal support for a unique fluvial style for the Precambrian, beyond that generally accepted for that period and discussed briefly in the first paragraph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号