首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   899篇
  免费   37篇
  国内免费   2篇
测绘学   30篇
大气科学   65篇
地球物理   190篇
地质学   270篇
海洋学   87篇
天文学   176篇
综合类   8篇
自然地理   112篇
  2024年   9篇
  2021年   13篇
  2020年   16篇
  2019年   21篇
  2018年   17篇
  2017年   27篇
  2016年   20篇
  2015年   18篇
  2014年   29篇
  2013年   21篇
  2012年   28篇
  2011年   29篇
  2010年   36篇
  2009年   54篇
  2008年   47篇
  2007年   44篇
  2006年   37篇
  2005年   31篇
  2004年   39篇
  2003年   43篇
  2002年   31篇
  2001年   17篇
  2000年   20篇
  1999年   18篇
  1998年   23篇
  1997年   9篇
  1996年   17篇
  1995年   9篇
  1994年   8篇
  1993年   8篇
  1992年   10篇
  1991年   4篇
  1990年   7篇
  1989年   12篇
  1988年   6篇
  1987年   7篇
  1986年   6篇
  1985年   9篇
  1984年   13篇
  1983年   9篇
  1982年   12篇
  1981年   6篇
  1980年   6篇
  1979年   11篇
  1978年   8篇
  1977年   15篇
  1976年   8篇
  1975年   12篇
  1974年   8篇
  1973年   6篇
排序方式: 共有938条查询结果,搜索用时 81 毫秒
81.
A non-hydrostatic numerical model, the Regional Atmospheric Modeling System (RAMS), has been used to investigate the development of katabatic jumps in Coats Land, Antarctica. In the control run with a 5 m s-1downslope directed initial wind, a katabatic jump develops near the foot of the idealized slope. The jump is manifested as a rapid deceleration of the downslope flow and a change from supercritical to subcritical flow, in a hydraulic sense, i.e., the Froude number (Fr) of the flow changes from Fr > 1 to Fr> 1. Results from sensitivity experiments show that an increase in the upstream flow rate strengthens the jump, while an increase in the downstream inversion-layer depth results in a retreat of the jump. Hydraulic theory and Bernoulli's theorem have been used to explain the surface pressure change across the jump. It is found that hydraulic theory always underestimates the surface pressure change, while Bernoulli's theorem provides a satisfactory estimation. An analysis of the downs balance for the katabatic jump indicates that the important forces are those related to the pressure gradient, advection and, to a lesser extent, the turbulent momentum divergence. The development of katabatic jumps can be divided into two phases. In phase I, the t gradient force is nearly balanced by advection, while in phase II, the pressure gradient force is counterbalanced by turbulent momentum divergence. The upslope pressure gradient force associated with a pool of cold air over the ice shelf facilitates the formation of the katabatic jump.  相似文献   
82.

We consider the Janjic (NCEP Office Note 437:61, 2001) boundary-layer model, which is one of the most widely used in numerical weather prediction models. This boundary-layer model is based on a number of length scales that are, in turn, obtained from a master length multiplied by constants. We analyze the simulation results obtained using different sets of constants with respect to measurements using sonic anemometers, and interpret these results in terms of the turbulence processes in the atmosphere and of the role played by the different length scales. The simulations are run on a virtual machine on the Chameleon cloud for low-wind-speed, unstable, and stable conditions.

  相似文献   
83.
During the last interglacial insolation maximum (Eemian, MIS 5e) the tropical and subtropical African hydrological cycle was enhanced during boreal summer months. The climate anomalies are examined with a General Circulation Model (ECHAM4) that is equipped with a module for the direct simulation of 18O and deuterium (H 2 18 O and HDO, respectively) in all components of the hydrological cycle. A mechanism is proposed to explain the physical processes that lead to the modelled anomalies. Differential surface heating due to anomalies in orbital insolation forcing induce a zonal flow which results in enhanced moisture advection and precipitation. Increased cloud cover reduces incoming short wave radiation and induces a cooling between 10°N and 20°N. The isotopic composition of rainfall at these latitudes is therefore significantly altered. Increased amount of precipitation and stronger advection of moisture from the Atlantic result in isotopically more depleted rainfall in the Eemian East African subtropics compared to pre-industrial climate. The East–West gradient of the isotopic rainfall composition reverses in the Eemian simulation towards depleted values in the east, compared to more depleted western African rainfall in the pre-industrial simulation. The modelled re-distribution of δ18O and δD is the result of a change in the forcing of the zonal flow anomaly. We conclude that the orbitally induced forcing for African monsoon maxima extends further eastward over the continent and leaves a distinct isotopic signal that can be tested against proxy archives, such as lake sediment cores from the Ethiopian region.  相似文献   
84.
Turbulent fluxes of sensible and latent heat were measured with the helicopter-borne turbulence probe Helipod over a heterogeneous landscape around the Meteorological Observatory Lindenberg during the STINHO-2 and LITFASS-2003 field experiments. Besides the determination of area-averaged heat fluxes, the analysis focused on different aspects of the response of the turbulent structure of the convective boundary layer (CBL) on the surface heterogeneity. A special flight pattern was designed to study flux profiles both over quasi-homogeneous sub-areas of the study region (representing the major land use types—forest, farmland, water) and over a typical mixture of the different surfaces. Significant differences were found between the heat fluxes over the individual surfaces along flight legs at about 80 m above ground level, in agreement with large-aperture scintillometer measurements. This flux separation was still present during some flights at levels near the middle of the CBL. Different scales for the blending height and horizontal heterogeneity were calculated, but none of them could be identified as a reliable indicator of the mixing state of the lower CBL. With the exception of the flights over water, the latent heat flux measurements generally showed a larger statistical error when compared with the sensible heat flux. Correlation coefficients a nd integral length scales were used to characterise the interplay between the vertical transport of sensible and latent heat, which was found to vary between ‘fairly correlated’ and ‘decoupled’, also depending on the soil moisture conditions.  相似文献   
85.
Determining sediment transfer times is key to understanding source-to-sink dynamics and the transmission of environmental signals through the fluvial system. Previous work on the Bolivian Altiplano applied the in situ cosmogenic 14C-10Be-chronometer to river sands and proposed sediment storage times of ~10–20 kyr in four catchments southeast of Lake Titicaca. However, the fidelity of those results hinges upon isotopic steady-state within sediment supplied from the source area. With the aim of independently quantifying sediment storage times and testing the 14C-10Be steady-state assumption, we dated sediment storage units within one of the previously investigated catchments using radiocarbon dating, cosmogenic 10Be-26Al isochron burial dating, and 10Be-26Al depth-profile dating. Palaeosurfaces appear to preserve remnants of a former fluvial system, which has undergone drainage reversal, reduction in catchment area, and local isostatic uplift since ~2.8 Ma. From alluvium mantling the palaeosurfaces we gained a deposition age of ~580 ka, while lower down fluvial terraces yielded ≤34 ka, and floodplains ~3–1 ka. Owing to restricted channel connectivity with the terraces and palaeosurfaces, the main source of channel sediment is via reworking of the late Holocene floodplain. Yet modelling a set of feasible scenarios reveals that floodplain storage and burial depth are incompatible with the 14C-10Be disequilibrium measured in the channel. Instead we propose that the 14C-10Be offset results from: (i) non-uniform erosion whereby deep gullies supply hillslope-derived debris; and/or (ii) holocene landscape transience associated with climate or human impact. The reliability of the 14C-10Be chronometer vitally depends upon careful evaluation of sources of isotopic disequilibrium in a wide range of depositional and erosional landforms in the landscape. © 2018 John Wiley & Sons, Ltd.  相似文献   
86.
The presence of geophysical receivers on the seafloor changes the local wave field due to the receiver seafloor interaction. The resulting PP- and PS-wave distortion of the wave field is often referred to as receiver coupling to the seafloor and can make data processing challenging and sometimes impossible. This paper provides an overview of the mathematical approaches to describe receiver coupling, how to estimate receiver coupling and what the difficulties and possible solutions are. The first section shows how the mathematical approach developed from a simple model considering only the vertical receiver component to include all three receiver components and their interactions with the seafloor. In the second section, I show how receiver coupling can be measured and how it can be improved using mathematical and data-driven approaches.  相似文献   
87.
The Australian Institute of Marine Science (AIMS) conducted a pilot study around the Harriet A oil production platform on the Northwest Shelf of Australia. We evaluated hepatic ethoxyresorufin-O-deethylase (EROD) activity, fluorescent aromatic compounds (FACs) in bile and immunodetection of CYP1A-like proteins in two Australian tropical fish species, Gold-Spotted Trevally (Carangoides fulvoguttatus) and Bar-Cheeked Coral Trout (Plectropomus maculatus) to assess exposure to petroleum hydrocarbons associated with produced formation water (PFW). Additionally, the incidence of hydrocarbon-degrading bacteria isolated from the liver and bile of all fish captured was examined. Low EROD activity was found in both species, with EROD activity in C. fulvoguttatus showing significant site differences. FACs and CYP1A protein levels in C. fulvoguttatus showed a clear trend in hydrocarbon exposure consistent with hydrocarbon chemistry data: Harriet A>Harriet C>reference site. P. maculatus showed elevated levels of FACs at Harriet A as compared to the reference site and demonstrated detectable levels of CYP1A-like proteins at these two sites. Hydrocarbon-degrading bacteria were found in the liver and bile of both species, yet there was no correlation by sites. Our results demonstrate that C. fulvoguttatus and P. maculatus have potential as indicator species for assessing the effects from exposure to petroleum hydrocarbons. Both FACs and CYP1A are providing warning signs that there is potential for biological effects on fish populations exposed to PFW around the Harriet A production platform.  相似文献   
88.
Topographic data from the Shuttle Radar Topography Mission (SRTM) captures the permanent deformation of a prominent highstand of Mono Lake, California USA. Deformation of the Dechambeau Ranch highstand shoreline was measured using the elevation of the beach berm—shoreline bluff break-in-slope. Point source models and a boundary element dike model were used to approximate the source of deformation underneath the northern end of the Mono Craters. The point source model could not adequately explain the observed deformation. The dike model yielded the best results for a NW trending dike dipping 60° NE and inflated to widths greater than 60 m. The results suggest that the geometry of the source is more complex than a simple vertical dike and that the deformation is better explained with a dipping dike following a normal fault, or an elongated cryptodome.  相似文献   
89.
Surface water oxygen and hydrogen isotopic values are commonly used as proxies of precipitation isotopic values to track modern hydrologic processes while proxies of water isotopic values preserved in lake and river sediments are used for paleoclimate and paleoaltimetry studies. Previous work has been able to explain variability in USA river‐water and meteoric‐precipitation oxygen isotope variability with geographic variables. These studies show that in the western United States, river‐water isotopic values are depleted relative to precipitation values. In comparison, the controls on lake‐water isotopic values are not well constrained. It has been documented that western United States lake‐water input values, unlike river water, reflect the monthly weighted mean isotopic value of precipitation. To understand the differing controls on lake‐ and river‐water isotopic values in the western United States, we examine the seasonal distribution of precipitation, evaporation and snowmelt across a range of seasonality regimes. We generate new predictive equations based on easily measured factors for western United States lake‐water, which are able to explain 69–63% of the variability in lake‐water hydrogen and oxygen isotopic values. In addition to the geographic factors that can explain river and precipitation values, lake‐water isotopic values need factors related to local hydrologic and climatic characteristics to explain variability. Study results suggest that the spring snowmelt runs off the landscape via rivers and streams, depleting river and stream‐water isotopic values. By contrast, lakes receive seasonal contributions of precipitation in proportion to the seasonal fraction of total annual precipitation within their watershed. Climate change may alter the ratio of snow to rain fall, affecting water resource partitioning between rivers and lakes and by implication of groundwater. Paleolimnological studies must account for the multiple drivers of water isotopic values; likewise, studies based on the isotopic composition of fossil material need to distinguish between species that are associated with rivers versus lakes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
90.
Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditions closer to the natural environment, including transport and dilution effects. To achieve this goal, Fisheries and Oceans Canada and the US Environmental Protection Agency (EPA) designed and constructed a wave tank system to study chemical dispersant effectiveness under controlled mixing energy conditions (regular non-breaking, spilling breaking, and plunging breaking waves). Quantification of oil dispersant effectiveness was based on observed changes in dispersed oil concentrations and oil-droplet size distribution. The study results quantitatively demonstrated that total dispersed oil concentration and breakup kinetics of oil droplets in the water column were strongly dependent on the presence of chemical dispersants and the influence of breaking waves. These data on the effectiveness of dispersants as a function of sea state will have significant implications in the drafting of future operational guidelines for dispersant use at sea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号