首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1997篇
  免费   110篇
  国内免费   25篇
测绘学   63篇
大气科学   245篇
地球物理   557篇
地质学   770篇
海洋学   97篇
天文学   273篇
综合类   11篇
自然地理   116篇
  2023年   11篇
  2022年   25篇
  2021年   40篇
  2020年   53篇
  2019年   46篇
  2018年   85篇
  2017年   78篇
  2016年   109篇
  2015年   98篇
  2014年   126篇
  2013年   143篇
  2012年   124篇
  2011年   137篇
  2010年   120篇
  2009年   148篇
  2008年   112篇
  2007年   86篇
  2006年   85篇
  2005年   86篇
  2004年   56篇
  2003年   51篇
  2002年   51篇
  2001年   35篇
  2000年   21篇
  1999年   32篇
  1998年   23篇
  1997年   17篇
  1996年   15篇
  1995年   8篇
  1994年   9篇
  1993年   8篇
  1992年   6篇
  1991年   5篇
  1990年   11篇
  1989年   6篇
  1988年   5篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   9篇
  1983年   6篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1969年   3篇
  1957年   2篇
排序方式: 共有2132条查询结果,搜索用时 31 毫秒
91.
Computational Geosciences - A Correction to this paper has been published: https://doi.org/10.1007/s10596-021-10065-y  相似文献   
92.
Based on the high abundance of fine‐grained material and its dark appearance, NWA 11024 was recognized as a CM chondrite, which is also confirmed by oxygen isotope measurements. But contrary to known CM chondrites, the typical phases indicating aqueous alteration (e.g., phyllosilicates, carbonates) are missing. Using multiple analytical techniques, this study reveals the differences and similarities to known CM chondrites and will discuss the possibility that NWA 11024 is the first type 3 CM chondrite. During the investigation, two texturally apparent tochilinite–cronstedtite intergrowths were identified within two thin sections. However, the former phyllosilicates were recrystallized to Fe‐rich olivine during a heating event without changing the textural appearance. A peak temperature of 400–600 °C is estimated, which is not high enough to destroy or recrystallize calcite grains. Thus, calcites were never constituents of the mineral paragenesis. Another remarkable feature of NWA 11024 is the occurrence of unknown clot‐like inclusions (UCLIs) within fine‐grained rims, which are unique in this clarity. Their density and S concentration are significantly higher than of the surrounding fine‐grained rim and UCLIs can be seen as primary objects that were not formed by secondary alteration processes inside the rims. Similarities to chondritic and cometary interplanetary dust particles suggest an ice‐rich first‐generation planetesimal for their origin. In the earliest evolution, NWA 11024 experienced the lowest degree of aqueous alteration of all known CM chondrites and subsequently, a heating event dehydrated the sample. We suggest to classify the meteorite NWA 11024 as the first type 3 CM chondrite similar to the classification of CV3 chondrites (like Allende) that could also have lost their matrix phyllosilicates by thermal dehydration.  相似文献   
93.
We measured the He, Ne, and Ar isotopic concentrations and the 10Be, 26Al, 36Cl, and 41Ca concentrations in 56 iron meteorites of groups IIIAB, IIAB, IVA, IC, IIA, IIB, and one ungrouped. From 41Ca and 36Cl data, we calculated terrestrial ages indistinguishable from zero for six samples, indicating recent falls, up to 562 ± 86 ka. Three of the studied meteorites are falls. The data for the other 47 irons confirm that terrestrial ages for iron meteorites can be as long as a few hundred thousand years even in relatively humid conditions. The 36Cl‐36Ar cosmic ray exposure (CRE) ages range from 4.3 ± 0.4 Ma to 652 ± 99 Ma. By including literature data, we established a consistent and reliable CRE age database for 67 iron meteorites. The high quality of the CRE ages enables us to study structures in the CRE age histogram more reliably. At first sight, the CRE age histogram shows peaks at about 400 and 630 Ma. After correction for pairing, the updated CRE age histogram comprises 41 individual samples and shows no indications of temporal periodicity, especially not if one considers each iron meteorite group separately. Our study contradicts the hypothesis of periodic GCR intensity variations (Shaviv 2002, 2003), confirming other studies indicating that there are no periodic structures in the CRE age histogram (e.g., Rahmstorf et al. 2004; Jahnke 2005). The data contradict the hypothesis that periodic GCR intensity variations might have triggered periodic Earth climate changes. The 36Cl‐36Ar CRE ages are on average 40% lower than the 41K‐K CRE ages (e.g., Voshage 1967). This offset can either be due to an offset in the 41K‐K dating system or due to a significantly lower GCR intensity in the time interval 195–656 Ma compared to the recent past. A 40% lower GCR intensity, however, would have increased the Earth temperature by up to 2 °C, which seems unrealistic and leaves an ill‐defined 41K‐K CRE age system the most likely explanation. Finally, we present new 26Al/21Ne and 10Be/21Ne production rate ratios of 0.32 ± 0.01 and 0.44 ± 0.03, respectively.  相似文献   
94.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   
95.
Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc.  相似文献   
96.
Despite the wide distribution of zoanthids, little is known about their pattern of reproduction. Here we investigate the reproductive biology of two Mediterranean species, the common Parazoanthus axinellae (Schmidt) and the rare Savalia savaglia (Bertoloni). For both species, samples were collected during an annual cycle, from January to December 2005, in the Western Mediterranean (Ligurian Sea, Italy). Both species are gonochoric. In P. axinellae the sex‐ratio (n colonies = 30) showed a slight predominance of male colonies (M/F = 1.35), whereas in the population of S. savaglia (n colonies = 15) a predominance of females was found (M/F = 0.3). In P. axinellae the first gametocytes were visible in March, whereas in S. savaglia they became visible in May. Both species reproduce at the end of autumn when seawater temperature begins to decrease. Parazoanthus axinellae (10 m depth) spawns eggs and sperms in November, whereas S. savaglia (67 m depth) spawns in December. In P. axinellae sexes were segregated on a rocky wall, with males occurring deeper, whereas male and female colonies of S. savaglia were irregularly dispersed in the population. The maximum number of oocytes differed between the species, being higher in P. axinellae than in S. savaglia.  相似文献   
97.
Multidisciplinary study of seep-related structures on Southern Vøring Plateau has been performed during several UNESCO/IOC TTR cruises on R/V Professor Logachev. High-resolution sidescan sonar and subbottom profiler data suggest that most of the studied fluid discharge structures have a positive relief at their central part surrounded by depression. Our data shows that the present day fluid activity is concentrated on the top of these “seep mounds”. Number of high hydrocarbon (HC) gas saturated sediment cores and 5 cores with gas hydrate presence have been recovered from these structures. δ13C of methane (between −68 and −94.6‰ VPDB) and dry composition of the gas points to its biogenic origin. The sulfate depletion generally occurs within the upper 30–200 cm bsf and usually coincides with an increase of methane concentration. Pore water δ18O ranges from 0.29 to 1.14‰ showing an overall gradual increase from bottom water values (δ18O ∼ 0.35‰). Although no obvious evidence of fluid seepage was observed during the TV surveys, coring data revealed a broad distribution of living Pogonophora and bacterial colonies on sea bottom inside seep structures. These evidences point to ongoing fluid activity (continuous seepage of methane) through these structures. From other side, considerable number and variety of chemosynthetic macro fauna with complete absence of living species suggest that present day level of fluid activity is significantly lower than it was in past. Dead and subfossil fauna recovered from various seep sites consist of solemyid (Acharax sp.), thyasirid and vesicomyid (cf. Calyptogena sp.) bivalves belonging to chemosymbiotic families. Significant variations in δ13C (−31.6‰ to −59.2‰) and δ18O (0.42‰ and 6.4‰) of methane-derived carbonates collected from these structures most probably related to changes in gas composition and bottom water temperature between periods of their precipitation. This led us to ideas that: (1) seep activity on the Southern Vøring Plateau was started with large input of the deep thermogenic gas and gradually decries in time with increasing of biogenic constituent; (2) authigenic carbonate precipitation started at the near normal deep sea environments with bottom water temperature around +5 °C and continues with gradual cooling up to negative temperatures recording at present time.  相似文献   
98.
The Martian meteorites comprise mantle‐derived mafic to ultramafic rocks that formed in shallow intrusions and/or lava flows. This study reports the first in situ platinum‐group element data on chromite and ulvöspinel from a series of dunitic chassignites and olivine‐phyric shergottites, determined using laser‐ablation ICP‐MS. As recent studies have shown that Ru has strongly contrasting affinities for coexisting sulfide and spinel phases, the precise in situ analysis of this element in spinel can provide important insights into the sulfide saturation history of Martian mantle‐derived melts. The new data reveal distinctive differences between the two meteorite groups. Chromite from the chassignites Northwest Africa 2737 (NWA 2737) and Chassigny contained detectable concentrations of Ru (up to ~160 ppb Ru) in solid solution, whereas chromite and ulvöspinel from the olivine‐phyric shergottites Yamato‐980459 (Y‐980459), Tissint, and Dhofar 019 displayed Ru concentrations consistently below detection limit (<42 ppb). The relatively elevated Ru signatures of chromite from the chassignites suggest a Ru‐rich (~1–4 ppb) parental melt for this meteorite group, which presumably did not experience segregation of immiscible sulfide liquids over the interval of mantle melting, melt ascent, and chromite crystallization. The relatively Ru‐depleted signature of chromite and ulvöspinel from the olivine‐phyric shergottites may be the consequence of relatively lower Ru contents (<1 ppb) in the parental melts, and/or the presence of sulfides during the crystallization of the spinel phases. The results of this study illustrate the significance of platinum‐group element in situ analysis on spinel phases to decipher the sulfide saturation history of magmatic systems.  相似文献   
99.
Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high‐pressure polymorphs in rock‐forming minerals are known from meteorites and terrestrial impact craters. Here, we investigate the formation of high‐pressure polymorphs of α‐quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α‐quartz in situ by synchrotron powder X‐ray diffraction. Phase transitions of α‐quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s?1, experiments reveal that α‐quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO6 octahedra rather than the rearrangement of the SiO4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.  相似文献   
100.
Although W. Brunner began to weight sunspot counts (from 1926), using a method whereby larger spots were counted more than once, he compensated for the weighting by not counting enough smaller spots in order to maintain the same reduction factor (0.6) as was used by his predecessor A. Wolfer to reduce the count to R. Wolf’s original scale, so that the weighting did not have any effect on the scale of the sunspot number. In 1947, M. Waldmeier formalized the weighting (on a scale from 1 to 5) of the sunspot count made at Zurich and its auxiliary station Locarno. This explicit counting method, when followed, inflates the relative sunspot number over that which corresponds to the scale set by Wolfer (and matched by Brunner). Recounting some 60,000 sunspots on drawings from the reference station Locarno shows that the number of sunspots reported was “over counted” by \({\approx}\,44~\%\) on average, leading to an inflation (measured by an effective weight factor) in excess of 1.2 for high solar activity. In a double-blind parallel counting by the Locarno observer M. Cagnotti, we determined that Svalgaard’s count closely matches that of Cagnotti, allowing us to determine from direct observation the daily weight factor for spots since 2003 (and sporadically before). The effective total inflation turns out to have two sources: a major one (15?–?18 %) caused by weighting of spots, and a minor source (4?–?5 %) caused by the introduction of the Zürich classification of sunspot groups which increases the group count by 7?–?8 % and the relative sunspot number by about half that. We find that a simple empirical equation (depending on the activity level) fits the observed factors well, and use that fit to estimate the weighting inflation factor for each month back to the introduction of effective inflation in 1947 and thus to be able to correct for the over-counts and to reduce sunspot counting to the Wolfer method in use from 1894 onwards.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号