首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   7篇
测绘学   4篇
大气科学   5篇
地球物理   22篇
地质学   44篇
海洋学   8篇
天文学   32篇
综合类   1篇
自然地理   10篇
  2023年   2篇
  2022年   2篇
  2020年   8篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   6篇
  2015年   6篇
  2014年   4篇
  2013年   9篇
  2012年   4篇
  2011年   5篇
  2010年   11篇
  2009年   10篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1985年   2篇
  1982年   2篇
  1980年   3篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1970年   1篇
排序方式: 共有126条查询结果,搜索用时 281 毫秒
51.
To evaluate the potential of using surficial shell accumulations for paleoenvironmental studies, an extensive time series of individually dated specimens of the marine infaunal bivalve mollusk Semele casali was assembled using amino acid racemization (AAR) ratios (n = 270) calibrated against radiocarbon ages (n = 32). The shells were collected from surface sediments at multiple sites across a sediment-starved shelf in the shallow sub-tropical São Paulo Bight (São Paulo State, Brazil). The resulting 14C-calibrated AAR time series, one of the largest AAR datasets compiled to date, ranges from modern to 10,307 cal yr BP, is right skewed, and represents a remarkably complete time series: the completeness of the Holocene record is 66% at 250-yr binning resolution and 81% at 500-yr binning resolution. Extensive time-averaging is observed for all sites across the sampled bathymetric range indicating long water depth-invariant survival of carbonate shells at the sediment surface with low net sedimentation rates. Benthic organisms collected from active depositional surfaces can provide multi-millennial time series of biomineral records and serve as a source of geochemical proxy data for reconstructing environmental and climatic trends throughout the Holocene at centennial resolution. Surface sediments can contain time-rich shell accumulations that record the entire Holocene, not just the present.  相似文献   
52.
The compressibility of antigorite has been determined up to 8.826(8) GPa, for the first time by single crystal X-ray diffraction in a diamond anvil cell, on a specimen from Cerro del Almirez. Fifteen pressure–volume data, up to 5.910(6) GPa, have been fit by a third-order Birch–Murnaghan equation of state, yielding V 0 = 2,914.07(23) Å3, K T0 = 62.9(4) GPa, with K′ = 6.1(2). The compression of antigorite is very anisotropic with axial compressibilities in the ratio 1.11:1.00:3.22 along a, b and c, respectively. The new equation of state leads to an estimation of the upper stability limit of antigorite that is intermediate with respect to existing values, and in better agreement with experiments. At pressures in excess of 6 GPa antigorite displays a significant volume softening that may be relevant for very cold subducting slabs.  相似文献   
53.
A novel two-phase hybrid controller is proposed to optimize propellant consumption during multiple spacecraft rendezvous maneuvers in Low Earth Orbit. This controller exploits generated differentials in aerodynamic drag on each involved chaser spacecraft to effect a propellant-free trajectory near to the target spacecraft during the first phase of the maneuver, and then uses a fuel optimal control strategy via continuous low-thrust engines to effect a precision dock during the second phase. In particular, by varying the imparted aerodynamic drag force on each of the chaser spacecraft, relative differential accelerations are generated between each chaser and the target spacecraft along two of the three translational degrees of freedom. In order to generate this required differential, each chaser spacecraft is assumed to include a system of rotating flat panels. Additionally, each chaser spacecraft is assumed to have continuous low-thrust capability along the three translational degrees of freedom and full-axis attitude control. Sample simulations are presented to support the validity and robustness of the proposed hybrid controller to variations in the atmospheric density along with different spacecraft masses and ballistic coefficients. Furthermore, the proposed hybrid controller is validated against a complete nonlinear orbital model to include relative navigation errors typical of carrier-phase differential GPS (CDGPS). Limitations of the proposed controller appear relative to the target spacecraft’s orbit eccentricity and a general characterization of the atmospheric density. Bounds on these variables are included to provide a framework within which the proposed hybrid controller can effect an extremely low propellant rendezvous of multiple chaser spacecraft to a desired target spacecraft.  相似文献   
54.
Methane is key to sustaining Titan's thick nitrogen atmosphere. However, methane is destroyed and converted to heavier hydrocarbons irreversibly on a relatively short timescale of approximately 10-100 million years. Without the warming provided by CH4-generated hydrocarbon hazes in the stratosphere and the pressure induced opacity in the infrared, particularly by CH4-N2 and H2-N2 collisions in the troposphere, the atmosphere could be gradually reduced to as low as tens of millibar pressure. An understanding of the source-sink cycle of methane is thus crucial to the evolutionary history of Titan and its atmosphere. In this paper we propose that a complex photochemical-meteorological-hydrogeochemical cycle of methane operates on Titan. We further suggest that although photochemistry leads to the loss of methane from the atmosphere, conversion to a global ocean of ethane is unlikely. The behavior of methane in the troposphere and the surface, as measured by the Cassini-Huygens gas chromatograph mass spectrometer, together with evidence of cryovolcanism reported by the Cassini visual and infrared mapping spectrometer, represents a “methalogical” cycle on Titan, somewhat akin to the hydrological cycle on Earth. In the absence of net loss to the interior, it would represent a closed cycle. However, a source is still needed to replenish the methane lost to photolysis. A hydrogeochemical source deep in the interior of Titan holds promise. It is well known that in serpentinization, hydration of ultramafic silicates in terrestrial oceans produces H2(aq), whose reaction with carbon grains or carbon dioxide in the crustal pores produces methane gas. Appropriate geological, thermal, and pressure conditions could have existed in and below Titan's purported water-ammonia ocean for “low-temperature” serpentinization to occur in Titan's accretionary heating phase. On the other hand, impacts could trigger the process at high temperatures. In either instance, storage of methane as a stable clathrate-hydrate in Titan's interior for later release to the atmosphere is quite plausible. There is also some likelihood that the production of methane on Titan by serpentinization is a gradual and continuous on-going process.  相似文献   
55.
Carbon dioxide removal (CDR) is the only geoengineering technique that allows negative emissions and the reduction of anthropogenic carbon in the atmosphere. Since the time scales of the global carbon cycle are largely driven by the exchanges with the natural oceanic stocks, the implementation of CDR actions is anticipated to create outgassing from the ocean that may reduce their efficiency. The adjustment of the natural carbon cycle to CDR was studied with a numerical Earth System Model, focusing on the oceanic component and considering two idealized families of CDR policies, one based on a target atmospheric concentration and one based on planned negative emissions. Results show that both actions are anticipated to release the anthropogenic carbon stored in the surface ocean, effectively increasing the required removal effort. The additional negative emissions are expected to be lower when the CDR policy is driven by planned removal rates without prescribing a target atmospheric CO2 concentration.  相似文献   
56.
57.
58.
In San Gregorio (L’Aquila, Italy) a three-story, reinforced concrete (RC) building had the first floor collapsed following the earthquake of April 6, 2009. The remaining two stories fell with a displacement in the horizontal projection of about 70 cm. This unusual behaviour is made more puzzling by the fact that buildings located at a short distance and with similar features had little or no damage reported. To understand the causes of the collapse we performed strong motion recordings, microtremor measurements, a detailed geological survey, a high-resolution geo-electrical tomography, a borehole with a down-hole test. On the building we performed a geometrical survey and laboratory tests on concrete cores. The acceleration and noise recordings have shown a high amplification with uphill-downhill direction. The geological survey has revealed the presence of co-seismic fractures on stiff soils. Geo-electrical tomography has shown an unexpected, strong discontinuity just below the building. Taking advantage of excavations in adjacent lots, we have highlighted rare cataclastic decimetric bands with a very low resistance material incorporated in well-stratified calcarenites. The same soft material has been founded in the borehole down to 17 m from ground level, showing a shear wave velocity that starts at 250 m/s, increases with depth and has an abrupt transition in calcarenites at 1,150 m/s. The surface geophysical measurements in the vicinity of the site have not shown similar situations, with flat HVSR curves as expected for a rock outcrop, except for a lateral extension of the soft zone. The analysis on the quality of the building materials has yielded values higher than average for the age and type of construction, and no special design or construction deficiencies have been observed. A strong, peculiar site effect thus appears to be the most likely cause of the damage observed.  相似文献   
59.
The new mineral species lavoisierite, ideally Mn2+ 8[Al10(Mn3+Mg)][Si11P]O44(OH)12, has been discovered in piemontite-bearing micaschists belonging to the Piedmontese Nappe from Punta Gensane, Viù Valley, Western Alps, Italy. It occurs as yellow-orange acicular to prismatic-tabular crystals up to a few millimeters in length, with white streak and vitreous luster, elongated along [010] and flattened on {001}. Lavoisierite is associated with quartz, “mica,” sursassite, piemontite, spessartine, braunite, and “tourmaline.” Calculated density is 3.576 g cm?3. In plane-polarized light, it is transparent, pleochroic, with pale yellow parallel to [010] and yellow-orange normal to this direction; extinction is parallel and elongation is positive. Birefringence is moderate; the calculated average refraction index n is 1.750. Lavoisierite is orthorhombic, space group Pnmm, with a 8.6891(10), b 5.7755(3), c 36.9504(20) Å, V 1854.3(2) Å3, Z = 2. Calculated main diffraction lines of the X-ray powder diffraction pattern are [d in Å, (I), (hkl); relative intensities are visually estimated]: 4.62 (m) (112), 2.931 (vs) (1110), 2.765 (s) (1111), 2.598 (s) (310), 2.448 (ms) (028). Chemical analyses by electron microprobe give (in wt%) P2O5 2.08, V2O5 0.37, SiO2 34.81, TiO2 0.13, Al2O3 22.92, Cr2O3 0.32, Fe2O3 0.86, Mn2O3 6.92, MnO 19.09, MgO 5.73, CaO 1.94, Na2O 0.01, H2O 5.44, sum 100.62 wt%. H2O content was calculated from structure refinement. The empirical formula, based on 56 anions, is (Mn 5.340 2+ Mg1.810Ca0.686Na0.006)Σ=7.852(Al8.921Mn 1.739 3+ Mg1.010Fe 0.214 3+ Cr0.084Ti0.032)Σ=12.000(Si11.496P0.582V0.081)Σ=12.159O43.995(OH)12.005. The crystal structure of lavoisierite was solved by direct methods and refined on the basis of 1743 observed reflections to R 1 = 4.6 %. The structure is characterized by columns of edge-sharing octahedra running along [010] and linked to each other by means of [SiO4], [Si2O7], and [Si3O10] groups. Lavoisierite, named after the French chemist and biologist Antoine-Laurent de Lavoisier (1743–1794), displays an unprecedented kind of structure, related to those of “ardennite” and sursassite.  相似文献   
60.
In the external units of the Sardinian Variscides Nappe Zone, volcanic and volcanoclastic successions of Middle Ordovician age follow Lower Paleozoic calc-alkaline magmatism developed at the northern Gondwana margin. We present geochemical and zircon U–Pb isotopic data for the Truzzulla Formation, a low-to-medium-grade metamorphic volcanic–volcanoclastic succession belonging to the Monte Grighini Unit, the deepest unit in the Nappe Zone. Geochemical and radiometric data allow us to define a Late Ordovician (Katian) magmatic (volcanic) event of calc-alkaline affinity. These new data, in conjunction with previously published data, indicate that in the Sardinian Variscides, the age of Lower Paleozoic Andean-type calc-alkaline magmatism spans from Middle to Late Ordovician. Moreover, the age distribution of calc-alkaline volcanics and volcanoclastic rocks in the Nappe Zone is consistent with a diachronous development of Middle–Late Ordovician Andean-type magmatic arc through the portion of the northern Gondwanian margin now represented by the Sardinian Variscides. This reconstruction of the Sardinian Variscides reflects the complex magmatic and tectonic evolution of the northern margin of Gondwana in the Lower Paleozoic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号