首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   11篇
  国内免费   4篇
测绘学   9篇
大气科学   17篇
地球物理   66篇
地质学   98篇
海洋学   9篇
天文学   4篇
综合类   6篇
自然地理   8篇
  2024年   2篇
  2023年   1篇
  2022年   7篇
  2021年   6篇
  2020年   8篇
  2019年   12篇
  2018年   17篇
  2017年   21篇
  2016年   18篇
  2015年   15篇
  2014年   18篇
  2013年   29篇
  2012年   12篇
  2011年   17篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   3篇
  1998年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有217条查询结果,搜索用时 15 毫秒
151.
152.
Natural analogues are an important source of long-term data and may be viewed as naturally occurring experiments that often include processes, phenomena, and scenarios that are important to nuclear waste disposal safety assessment studies. The Koongarra uranium deposit in the Alligator Rivers region of Australia is one of the best-studied natural analogue sites. The deposit has been subjected to chemical weathering over several million years, during which many climatological, hydrological, and geological changes have taken place, resulting in the mobilization and spreading of uranium. Secondary uranium mineralization and dispersed uranium are present from the surface down to the base of the weathering zone, some 25 m deep. In this work, a simple uranium transport model is presented and sensitivity analyses are conducted for key model parameters. Analyses of field and laboratory data show that three layers can be distinguished in the Koongarra area: (1) a top layer that is fully weathered, (2) an intermediate layer that is partially weathered (the weathering zone), and (3) a lower layer that is unweathered. The weathering zone has been moving downward as the weathering process proceeds. Groundwater velocities are found to be largest in the weathering zone. Transport of uranium is believed to take place primarily in this zone. It appears that changes in the direction of groundwater flow have not had a significant effect on the uranium dispersion pattern. The solid-phase uranium data show that the uranium concentration does not significantly change with depth within the fully weathered zone. This implies that uranium transport has stopped in these layers. A two-dimensional vertically integrated model for transport of uranium in the weathering zone has been developed. Simulations with a velocity field constant in time and space have been carried out, taking into account the downward movement of this zone and the dissolution of uranium in the orebody. The latter has been modelled by a nonequilibrium relationship. In these simulations, pseudo-steady state uranium distributions are computed. The main conclusion drawn from this study is that the movement of the weathering zone and the nonequilibrium dissolution of uranium in the orebody play an important role in the transport of uranium. Despite the fact that the model is a gross simplification of what has actually happened in the past two million years, a reasonable fit of calculated and observed uranium distributions was obtained with acceptable values for the model parameters.  相似文献   
153.
Natural Resources Research - Habitat suitability modeling and mapping are important aspects of long-term strategies for sustaining plant ecosystems. In this study, seven state-of-the-art machine...  相似文献   
154.
A numerical study of geostrophic adjustment and frontogenesis   总被引:1,自引:0,他引:1  
ANumericalStudyofGeostrophicAdjustmentandFrontogenesisMajidM.FarahaniandWuRongsheng(伍荣生)DepartmentofAtmosphericSciences,Nanji...  相似文献   
155.
156.
157.
Theoretical and Applied Climatology - Examining historical variations of hydroclimatic variables can provide crucial information about changes of water resources in a water cycle. In this study,...  相似文献   
158.

Drought monitoring is carried out using various drought indices, including SPI, to generate time series of dry and wet periods. Furthermore, the dispersion of dry and wet periods was embossed with different intensities (high, medium, and low) over the data record years. Although these results were very necessary for planning and predicting future droughts, it appeared that the application of any trend over dry and wet periods could provide more accurate and unbiased or safer predictions in terms of analysis process. Generally, most of the researchers believed that the results of a drought trend analysis have been influenced by short-term persistence or significant autocorrelation with different lags on drought event time series and the mentioned impact should be preferably removed. Accordingly, drought monitoring was accomplished using SPI and PNPI drought indices to extract time series of dry and wet periods in terms of 50-year (1965–2014) annual rainfall data of 40 synoptic stations over Iran. Having used the basic and modified Mann–Kendall nonparametric tests, it was attempted to analyze the trend of dry and wet periods extracted from mentioned indices. The results represent the relative advantage of using the modified Mann–Kendall test in drought trend analysis. Furthermore, it was shown that the trend of dry and wet periods was negative in the majority of selected stations and that this trend was significant at 95% confidence level in northwest of Iran. Also, the results indicated the similar performance of SPI and PNPI indices in trend analysis of dry and wet periods.

  相似文献   
159.
Evaluation of groundwater resources in dry areas without enough data is a challenging task in many parts of the world, including Tehran–Karaj plain in Iran, which includes Tehran, the capital city of Iran and Karaj, one of Iran’s biggest cities. Water demand due to increasing agricultural and industrial activities caused many problems in the field of water resources management. In this study, the potential of groundwater resources was evaluated using remote sensing, geographic information system (GIS), and analytic hierarchy process (AHP) for the first time. Digital Elevation Model from Shuttle Radar Topography Mission was used to generate a slope map and drainage density map. Three Landsat-8 satellite images were utilized to provide lineament density and land cover/land use maps. Geological and soil type maps were provided from the Geological Survey and Mineral Explorations of Iran (GSI). Tropical Rainfall Measuring Mission data were used to prepare average annual precipitation map. Discharge values from 102 pumping wells in the time period of 2002–2014 were used to evaluate the results. Seven data layers were prepared, and the geodatabase was made in GIS. The layers and their classes were assigned weights using AHP method. Finally, the layers were overlaid based on their weights, and the potential map of groundwater resources was generated. The area was classified into five zones with very high, high, moderate, low, and very low potentials. The zones covered 5.95, 32.90, 22.70, 10.20, and 28.25% of the study area, respectively. The results showed good agreement with the field data obtained from discharge wells.  相似文献   
160.
The macroscopic modelling of two-phase flow processes in subsurface hydrosystems or industrial applications on the Darcy scale usually requires a constitutive relationship between capillary pressure and saturation, the Pc(Sw) relationship. Traditionally, it is assumed that a unique relation between Pc and Sw exists independently of the flow conditions as long as hysteretic effects can be neglected. Recently, this assumption has been questioned and alternative formulations have been suggested. For example, the extended Pc(Sw) relationship by Hassanizadeh and Gray [Hassanizadeh SM, Gray WG. Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv Water Resources 1990;13(4):169–86] proposes that the difference between the phase pressures to the equilibrium capillary pressure is a linear function of the rate of change of saturation, thereby introducing a constant of proportionality, the coefficient τ. It is desirable to identify cases where the extended relationship needs to be considered. Consequently, a dimensional analysis is performed on the basis of the two-phase balance equations. In addition to the well-known capillary and gravitational number, the dimensional analysis yields a new dimensionless number. The dynamic number Dy quantifies the ratio of dynamic capillary to viscous forces. Relating the dynamic to the capillary as well as the gravitational number gives the new numbers DyC and DyG, respectively. For given sets of fluid and porous medium parameters, the dimensionless numbers Dy and DyC are interpreted as functions of the characteristic length and flow velocity. The simulation of an imbibition process provides insight into the interpretation of the characteristic length scale. The most promising choice for this length scale seems to be the front width. We conclude that consideration of the extended Pc(Sw) relationship may be important for porous media with high permeability, small entry pressure and high coefficient τ when systems with a small characteristic length (e.g. steep front) and small characteristic time scale are under investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号