首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   10篇
  国内免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   51篇
地质学   87篇
海洋学   16篇
天文学   20篇
综合类   1篇
自然地理   9篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2018年   2篇
  2017年   6篇
  2016年   14篇
  2015年   8篇
  2014年   19篇
  2013年   24篇
  2012年   9篇
  2011年   11篇
  2010年   17篇
  2009年   19篇
  2008年   8篇
  2007年   6篇
  2006年   6篇
  2005年   7篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1990年   1篇
  1987年   1篇
  1980年   1篇
排序方式: 共有187条查询结果,搜索用时 31 毫秒
31.
In this study, it was aimed to characterize temporal variations of air pollutants for determining contribution to pollution episodes and to obtain correlations between these pollutants. With this aim we used data analysis for measured sulfur dioxide (SO2), particulate matter (PM, black fume and PM10), nitrogen oxides (NOx), ozone (O3), carbon monoxide (CO), methane (CH4), and non‐methane hydrocarbons (NMHC) recorded in Kocaeli, one of the most industrilizated cities of Turkey. Pollutant concentrations were the results of continuous and semi‐automatic measurements. Semi‐automatic measurements of SO2 and PM (black fume) were enclosing period from 1987 to 2008 whereas continuous monitoring of all pollutants included years of 2007–2009. In the first stage of the study daily, monthly, annual, and seasonal variations of pollution were researched. Annual average concentrations were compared with limits set by Air Quality Protection Regulation (AQPR), Air Quality Evaluation and Management Regulation (AQEMR), World Health Organization (WHO), European Union (EU), and National Ambient Air Quality Standards (USEPA). In the following stage relationships between pollutants such as NO2–O3, NOx–CO, NOx–NMHC, and NOx–SO2 were investigated and correlation coefficients were determined as 0.87, 0.56, 0.51, and 0.69, respectively. R2 values of regression models developed from these correlations were 0.78, 0.56, 0.34, and 0.72, respectively. Vehicle density of the traffic was evaluated with NOx–O3 emissions and decrease was seen in NOx emissions due to decreasing vehicle density at weekends whereas O3 concentrations increased. These correlations enable prediction of the parameters that cannot be measured which is important for providing improvement in early warning systems.  相似文献   
32.
This study compares the thermal bioclimatic conditions recorded at Bursa (100 m) and Uluda? (1878 m) meteorological stations at 7:00, 14:00 and 21:00 LST (local standard time) between 1975 and 2006, by using the physiologically equivalent temperature (PET), which is calculated from meteorological parameters. The effects of elevation-dependent environmental and atmospheric conditions on thermal perception (i.e., PET) values were analyzed and assessed. The analysis showed that the mean annual difference between PET values in Bursa and Uluda? was 12 ºC. The difference was lower in winter (9 ºC PET) and higher in summer (15 ºC PET). The highest difference between PET values occurred in the afternoon (16 ºC PET) and the lowest difference occurred in the morning (8.4 ºC PET). The differences occur as a result of high altitude and higher surface albedo due to snowfall, which leads to lower PET values and thus to less comfortable thermal conditions. The mean PET values of Bursa and Uluda? decrease 0.67 ºC every 100 m.  相似文献   
33.
The Late Cretaceous ükapili Granitoid including mafic microgranular enclaves intruded into metapelitic and metabasic rocks, and overlain unconformably by Neogene ignimbrites in the Ni de area of Turkey. It is mostly granite and minor granodiorite in composition, whereas its enclaves are dominantly gabbro with a few diorites in composition. The ükapili Granitoid is composed mainly of quartz, K-feldspar, plagioclase, biotite, muscovite and minor amphibole while its enclaves contain mostly plagioclase, amphibole, minor pyroxene and biotite. The ükapili Granitoid has calcalkaline and peraluminous (A/CNK= 1.0-1.3) geochemical characteristics. It is characterized by high LILE/HFSE and LREE/HREE ratios ((La/Lu) N = 3-33), and has negative Ba, Ta, Nb and Eu anomalies, resembling those of collision granitoids. The ükapili Granitoid has relatively high 87Sr/86Sr (i) ratios (0.711189-0.716061) and low εNd (t) values (-5.13 to -7.13), confirming crustal melting. In contrast, the enclaves are tholeiitic and metaluminous, and slightly enriched in LILEs (K, Rb) and Th, and have negative Ta, Nb and Ti anomalies; propose that they were derived from a subduction-modified mantle source. Based on mineral and whole rock chemistry data, the ükapili granitoid is H-(hybrid) type, post-collision granitoid developed by mixing/mingling processes between crustal melts and mantle-derived mafic magmas.  相似文献   
34.
Two types of fuzzy inference systems (FIS) are used for predicting municipal water consumption time series. The FISs used include an adaptive neuro-fuzzy inference system (ANFIS) and a Mamdani fuzzy inference systems (MFIS). The prediction models are constructed based on the combination of the antecedent values of water consumptions. The performance of ANFIS and MFIS models in training and testing phases are compared with the observations and the best fit model is identified according to the selected performance criteria. The results demonstrated that the ANFIS model is superior to MFIS models and can be successfully applied for prediction of water consumption time series.  相似文献   
35.
We study the surface deformation associated with the 22 December 1999 earthquake, a moderate sized but damaging event at Ain Temouchent (northwestern Algeria) using Interferometric Satellite Aperture Radar images (InSAR). The mainshock focal mechanism solution indicates reverse faulting with a NE–SW trending rupture comparable to other major seismic events of this section of the Africa–Eurasia plate boundary. Previously, the earthquake fault parameters were, however, poorly known because no aftershocks were precisely determined and no coseismic surface ruptures were observed in the field. Using a pair of ERS data with small baseline and short temporal separation in the ascending orbit we obtained an interferogram that shows the coseismic surface displacement field despite poor coherence. The interferogram measures four fringes and displays an ellipse-shaped lobe with ∼11 cm peak line-of-sight displacement. The elastic modeling using a boundary element method (Poly3Dinv) indicate coseismic slip reaching up to 1 m at 5 km depth on the N 57° E trending, dipping 32° NW Tafna thrust fault. The geodetic estimate of seismic moment is 4.7 × 1017 N m. (Mw 5.7) in is good agreement with seismological results. The elliptical shape of the surface displacement field coincides with the NE–SW trending Berdani fault-related fold. The consistency between the geological observations and InSAR solution shed light on the precise earthquake location and related Tafna fault parameters.  相似文献   
36.
37.
38.
39.
40.
Two gravity cores (CAG-3 and C-15) from the tectonically active, 1,276-m deep Çınarcık Basin of the Marmara Sea each include three sandy turbiditic mud units (1 mm–2 cm thick) with sharp basal contacts. The high benthic foraminifer content of these units suggests that the sediments were transported by turbidity currents from the upper slope region. These units represent the thin edges of turbidites thickening towards the subsiding north-eastern part of the basin, and contain quartz, detrital calcite, intact shells and shell fragments, smectite, pyrite framboids, muscovite, biotite, epidote and garnet. Their clay fractions are more enriched in smectite than those of adjacent layers. AMS 14C ages (957±43 a.d. and 578±31 a.d.) of two upper and middle turbiditic units in core C15 overlap with the historical İstanbul-Thrace (intensity=10) and İstanbul-Kocaeli (intensity=9) earthquakes of 26 October 986 and 15 August 553, respectively. This overlap, together with sedimentological characteristics, strongly suggests that the turbiditic units are related to the tectono-seismic activity of the North Anatolian Fault. The age of the lowest turbiditic unit in core C-3 was found to be 6,573±87 a b.p. (calendar) by AMS 14 C. In terms of chronostratigraphic relationships and lithological composition, the turbiditic units in core CAG-3 cannot be correlated with those in C15. This can be explained by gravity-controlled sedimentation causing wedging out of turbidites towards the edge of the basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号