首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   16篇
  国内免费   2篇
测绘学   15篇
大气科学   9篇
地球物理   113篇
地质学   188篇
海洋学   18篇
天文学   28篇
综合类   2篇
自然地理   12篇
  2024年   1篇
  2023年   2篇
  2022年   9篇
  2021年   13篇
  2020年   13篇
  2019年   11篇
  2018年   29篇
  2017年   27篇
  2016年   31篇
  2015年   15篇
  2014年   31篇
  2013年   37篇
  2012年   22篇
  2011年   19篇
  2010年   20篇
  2009年   21篇
  2008年   7篇
  2007年   9篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   7篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   6篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1971年   1篇
排序方式: 共有385条查询结果,搜索用时 15 毫秒
201.
202.
The central Alborz mountain range, located in northern Iran, neighboring the Caspian Sea and where the two Persia and Eurasia plates meet, is known as a seismologically active area. In this regard, investigation of the behavior of saturated sand deposits located in this area may be of particular interest. Saturated sand deposits are subjected to instabilities owing to liquefaction or volume change due to earthquake shakings. A particular type of saturated sand deposits is Anzali sand which is abundant in Anzali port and other cities located in this area in northern Iran. This type of sand is a representative for most sands found in this area, i.e., the southern coastal line of Caspian Sea. This research is solely focused on the volume change behavior of marine deposits of Anzali area, often characterized as Anzali sand, in terms of the settlement of a model footing located on the surface of the sand by the aid of a transparent laminar shear box apparatus. Effects of a number of factors such as the frequency of the cyclic loading, the initial density of the sand, and the sample preparation method have been investigated. Observations indicated that the density index and the frequency of loading which are proportional to the energy of an earthquake have direct effects on the accumulation and amount of the final settlement of Anzali sand.  相似文献   
203.
Aggregate crushing is a phenomenon occurring in carbonate soils under shear and compressive loads resulting in settlement of the offshore structures such as piers, bridges, waterfronts, wharfs, and oil and gas extraction platform foundations. Therefore, it is of significant importance to address the above-mentioned issue through a comprehensive study. In the present research, the texture of carbonate soil in south Iran coasts and its effect at high hydrostatic pressure (2?MPa) on aggregate crushing was studied. The physical properties of coastal soils, such as the effective grain size, shape index, and angularity were then characterized to investigate their effect on grain crushing grade. The results showed that the effective grain size, shape index, angularity, and calcium carbonate content are the main parameters affecting the crushing of grains and consequently settlement of marine soils. Based on the above parameters, a relationship is proposed to estimate grain crushing in carbonate soils.  相似文献   
204.
From the Permian onwards, the Gondwana-derived Iran Plate drifted northward to collide with Eurasia in the Late Triassic, thereby closing the Palaeotethys. This Eo-Cimmerian Orogeny formed the Cimmeride fold-and-thrust belt. The Upper Triassic–Middle Jurassic Shemshak Group of northern Iran is commonly regarded as the Cimmerian foreland molasse. However, our tectono-stratigraphic analysis of the Shemshak Group resulted in a revised and precisely dated model for the Triassic–Jurassic geodynamic evolution of the Iran Plate: initial Cimmerian collision started in the Carnian with subsequent Late Triassic synorogenic peripheral foreland deposition (flysch, lower Shemshak Group). Subduction shifted south in the Norian (onset of Neotethys subduction below Iran) and slab break-off around the Triassic–Jurassic boundary caused rapid uplift of the Cimmerides followed by Liassic post-orogenic molasse (middle Shemshak Group). During the Toarcian–Aalenian (upper Shemshak Group), Neotethys back-arc rifting formed a deep-marine basin, which developed into the oceanic South Caspian Basin during the Late Bajocian–Late Jurassic.  相似文献   
205.
Lake Urmia, located in northwest Iran, contains a number of wetlands significantly affecting the environmental, social, and economic conditions of the region. The ecological condition of Lake Urmia has degraded during the past decade, due to climate change, human activities, and unsustainable management. The poor condition of the lake has also affected the surrounding wetlands. This study analyzes the land cover change of one of the wetlands in the southern part of Lake Urmia, known as Ghara-Gheshlagh wetland, in the period 1989–2015 using post-classification change detection and machine learning image classification. For this analysis, three Landsat images, acquired in 1989 (TM), 2001 (TM), and 2015 (Landsat-8), were used for the classification and change detection. Support vector machine learning algorithm, a supervised learning method, is employed, and images are classified into four main land cover classes namely “water,” ”barren,” “salty land,” and “agriculture and grassland.” Change detection was carried out for pairs of years 1989 to 2001 and 2001 until 2015. The results of this classification show that there is a sharp increase in the area of salt-saturated land as well as a decrease in the area of water resources. Overall classification accuracy obtained were high for the individual years: 1989 (91.48%), 2001 (90.63%), and 2015 (88.6%). Also, the Kappa coefficients for individual maps were high: 1989 (0.89), 2001 (0.8742), and 2015 (0.84). After that, the land cover change map of the study area is obtained between 1989 to 2001 and then 2001 to 2015. The results of this analysis suggest that more efforts should be taken to effectively manage water resources in the region and point to potential locations for focused management actions within the wetland area.  相似文献   
206.
Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to identify homogeneous hydrological watersheds using remote sensing data in western Iran. To achieve this goal, remote sensing indices including SAVI, LAI, NDMI, NDVI and snow cover, were extracted from MODIS data over the period 2000 to 2015. Then, a fuzzy method was used to clustering the watersheds based on the extracted indices. A fuzzy c-mean (FCM) algorithm enabled to classify 38 watersheds in three homogeneous groups. The optimal number of clusters was determined through evaluation of partition coefficient, partition entropy function and trial and error. The results indicated three homogeneous regions identified by the fuzzy c-mean clustering and remote sensing product which are consistent with the variations of topography and climate of the study area. Inherently, the grouped watersheds have similar hydrological properties and are likely to need similar management considerations and measures.  相似文献   
207.
Khalfi  C.  Ahmadi  R.  Trigui  H.  Ouali  J.  Mercier  E. 《Geotectonics》2019,53(3):419-432
Geotectonics - Through several stations on the forelimb of the Es Satah anticline belonging to Gafsa basin part of the southern Tunisian Atlas, an analysis of the striations encountered on the...  相似文献   
208.
Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt. The Ghadir Shear Belt is a 35 km-long, NW-oriented brittleductile shear zone that underwent overall sinistral transpression during the Late Neoproterozoic. Within this shear belt, strain is highly partitioned into shortening, oblique, extensional and strike-slip structures at multiple scales. Moreover, strain partitioning is heterogeneous along-strike giving rise to three distinct structural domains. In the East Ghadir and Ambaut shear belts, the strain is pure-shear dominated whereas the narrow sectors parallel to the shear walls in the West Ghadir Shear Zone are simple-shear dominated. These domains are comparable to splay-dominated and thrust-dominated strike-slip shear zones. The kinematic transition along the Ghadir shear belt is consistent with separate strike-slip and thrustsense shear zones. The earlier fabric(S1), is locally recognized in low strain areas and SW-ward thrusts. S2 is associated with a shallowly plunging stretching lineation(L2), and defines ~NW-SE major upright macroscopic folds in the East Ghadir shear belt. F2 folds are superimposed by ~NNW–SSE tight-minor and major F3 folds that are kinematically compatible with sinistral transpressional deformation along the West Ghadir Shear Zone and may represent strain partitioning during deformation. F2 and F3 folds are superimposed by ENE–WSW gentle F4 folds in the Ambaut shear belt. The sub-parallelism of F3 and F4 fold axes with the shear zones may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation in fold zones. Dextral ENEstriking shear zones were subsequently active at ca. 595 Ma, coeval with sinistral shearing along NW-to NNW-striking shear zones. The occurrence of upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the Ghadir shear belt. Oblique convergence may have been provoked by the buckling of the Hafafit gneiss-cored domes and relative rotations between its segments. Upright folds, fold with vertical axes and sinistral strike-slip shear zones developed in response to strain partitioning. The West Ghadir Shear Zone contains thrusts and strikeslip shear zones that resulted from lateral escape tectonics associated with lateral imbrication and transpression in response to oblique squeezing of the Arabian-Nubian Shield during agglutination of East and West Gondwana.  相似文献   
209.
210.
The settlement and excess pore pressure are calculated for a column of water-saturated clay in which the permeability and/or shear modulus vary with depth. Several fairly general laws of variation are investigated. In each case, the soil is assumed to have a permeable top surface and to rest on an impervious substrate. For all the variations examined, in which the shear modulus increases with depth below the surface but the permeability of the soil remains constant, the deflection at a given instant after imposition of the load decreases and the degree of settlement increases with increasing rate at which the change with depth takes place. It is found that, when the variation over the height of the column is one order of magnitude or less, the curve of degree-of-consolidation versus time is reasonably wellapproximated by the curve for a homogeneous soil whose modulus equals the depth-averaged value. When, in addition, the permeability decreases with depth, the approximation becomes less accurate. The same approximation, for moderate increase in shear modulus with depth, predicts satisfactorily the process of dissipation of excess pore pressure at a given depth, but breaks down when the variation in modulus is large. Finally, it is shown that the effect of variable modulus on the settlement is greater than of a comparable variation in permeability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号