首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   10篇
  国内免费   6篇
测绘学   8篇
大气科学   8篇
地球物理   38篇
地质学   79篇
海洋学   3篇
天文学   6篇
综合类   1篇
自然地理   12篇
  2022年   9篇
  2021年   10篇
  2020年   9篇
  2019年   8篇
  2018年   16篇
  2017年   12篇
  2016年   9篇
  2015年   12篇
  2014年   15篇
  2013年   15篇
  2012年   5篇
  2011年   6篇
  2010年   9篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2002年   2篇
  1986年   1篇
排序方式: 共有155条查询结果,搜索用时 31 毫秒
51.
The spatial sampling offered by TOPEX and Jason series of satellite radar altimeters and its continuity during the last twenty years are major assets to provide an improved vision of the global mean sea level (GMSL). The objective of this paper is to examine the recent GMSL variations (1993–2012) and to investigate the correlation between the GMSL and ENSO (El Niño-southern oscillation) episodes. For this purpose, a mean sea level anomalies time series, obtained from TOPEX, Jason-1 and Jason-2 measurements, is used to determine the trend of GMSL changes by using a simplified form of an unobserved components model (namely UCM). Then, to investigate the impact of the ENSO phenomenon on the GMSL changes, we considered the sea surface temperature anomalies (SSTA) index over the Niño3 region (5N–5S 150W–90W). Cross wavelet transform and wavelet coherence analysis are performed to expose common power between the GMSL changes and the SSTA index and their relative phase in the time–frequency space. The results indicate that there are in the estimated GMSL's trend a number of fluctuations over short periods that are least partly related to the El Niño/La Niña episodes. Cross wavelet transform and wavelet coherence analysis indicate that a significant correlation between GMSL and ENSO occurred during 1997–1998, 2006–2007, 2009–2010 El Niño events and 2007–2008 and 2010–2011 La Niña ones. All these areas show in-phase relationship, suggesting that GMSL and SSTA index vary synchronously.  相似文献   
52.
Shortage of water resources in arid and semi-arid areas causes water supply to be one of the most important subjects and major concerns within NGO and governments’ policies in recent years. The Shahrekord Plain aquifer system is located in a semi-arid area and acts as a key source of water supply. Groundwater management in this area is thus very important. Although change in the climatological factors is not possible, long-term fluctuation studies can help in managing the available water resources to overcome from drought or decrease its negative impact. The hydrodynamic study of the aquifer system coupled with the drought indices in each region can be useful in making decisions related to the hydro-ecosystem management of that region. In this article, hydrodynamics of the aquifer system of the Shahrekord Plain coupled with the ratio of P/PET as a drought index, are assessed on the long term. In Shahrekord Plain aquifer, there is a short-term seasonal fluctuation, which is increased by overexploitation during the dry season, when water is needed for irrigation. The hydrodynamic behavior of the plain aquifer on the long term is changing. This fluctuation at first is a function of time. Secondly, it is spatially dependent. Groundwater behavior is directly sensitive to the variation of drought index, both seasonally and on the long term.  相似文献   
53.
The sea level change is a crucial indicator of our climate. The spatial sampling offered by satellite altimetry and its continuity during the last 18 years are major assets to provide an improved vision of the sea level changes. In this paper, we analyze the University of Colorado database of sea level time series to determine the trends for 18 large ocean regions by means of the automatic trend extraction approach in the framework of the singular spectrum analysis technique. Our global sea level trend estimate of 3.19 mm/year for the period from 1993 to 2010 is comparable with the 3.20-mm/year sea level rise since 1993 calculated by AVISO Altimetry. However, the trends from the different ocean regions show dissimilar patterns. The major contributions to the global sea level rise during 1993–2010 are from the Indian Ocean (3.78?±?0.08 mm/year).  相似文献   
54.
Fluid storage systems, such as oil, gas, magma or water reservoirs, are often controlled by the host rock structure and faulted terrain. In sedimentary basins, where no direct information about underlying structure is available, the pattern of ground deformation may allow us to assess the buried fault arrangement. We provide an example in the semi-arid area of Iran, in the Kashmar Valley, a region subject to land subsidence due to water overexploitation. Geodetically determined subsidence rates in the Kashmar Valley exceed 15–30 cm yr−1. The pattern of surface deformation is strongly non-uniform and displays NE–SW elongated bowls of subsidence. The trend resembles old Cretaceous-to-Tertiary faults that evolved during early alpine tectonic deformation. Although these early alpine structures are considered tectonically inactive in the present day, the observed land subsidence pattern indicates significant structural control on the geometry of the aquifer basin and its deformation during reservoir drainage.  相似文献   
55.
The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471–80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.  相似文献   
56.
Interferometric identification and health monitoring of high‐rise buildings has been gaining increasing interest in recent years. The wave dispersion in the structure has been largely ignored in these efforts but needs to be considered to further develop these methods. In this paper, (i) the goodness of estimation of vertical wave velocity in buildings, as function of frequency, by two nonparametric interferometric techniques is examined, using realistic fixed‐base Timoshenko beam benchmark models. Such models are convenient because the variation of phase and group velocities with frequency can be derived theoretically. The models are those of the NS and EW responses of Millikan Library. One of the techniques, deconvolution interferometry, estimates the phase velocity on a frequency band from phase difference between motions at two locations in the structure, while the other one estimates it approximately at the resonant frequencies based on standing wave patterns. The paper also (ii) examines the modeling error in wave velocity profiles identified by fitting layered shear beam in broader band impulse response functions of buildings with significant bending flexibility. This error may affect inferences on the spatial distribution of damage from detected changes in such velocity profiles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
57.
A novel approach is introduced to generate simulated ground motion records by considering spectral acceleration correlations at multiple periods. Most of the current reliable Ground Motion Record(GMR) simulation procedures use a seismological model including source, path and site characteristics. However, the response spectrum of simulated GMR is somewhat different when compared with the response spectrum based on recorded GMRs. More specifi cally, the correlation between the spectral values at multiple periods is a characteristic of a record which is usually different between simulated and recorded GMRs. As this correlation has a signifi cant infl uence on the structural response, it is needed to investigate the consistency of the simulated ground motions with actual records. This issue has been investigated in this study by incorporating an optimization algorithm within the Boore simulation technique. Eight seismological key parameters were optimized in order to achieve approximately the same correlation coeffi cients and spectral acceleration between two sets of real and simulated records. The results show that the acceleration response spectra of the synthetic ground motions also have good agreement with the real recorded response spectra by implementation of the proposed optimized values.  相似文献   
58.
59.
This paper presents a new numerical model for river morphological predictions. This tool predicts vertical and lateral cross-section variations for alluvial rivers, which is an important task in predicting the associated hazard zone after a flood event. The Model for the HYdraulics of SEdiments in Rivers, version 1.0 (MHYSER 1.0) is a semi-two-dimensional model using the stream tubes concept to achieve lateral variations of velocity, flow stresses, and sediment transport rates. Each stream tube has the same conveyance as the other ones. In MHYSER 1.0, the uncoupled approach is used to solve the set of conservation equations. After the backwater calculation, the river is divided into a finite number of stream tubes of equal conveyances. The sediment routing and bed adjustments calculations are accomplished separately along each stream tube taking into account lateral mass exchanges. The determination of depth and width adjustments is based on the minimum stream power theory. Moreover, MHYSER 1.0 offers two options to treat riverbank stability. The first one is based on the angle of repose. The bank slope should not be allowed to increase beyond a certain critical value supplied to MHYSER 1.0. The second one is based on the modified Bishop’s method to determine a safety factor evaluating the potential risk of a landslide along the river bank.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号