首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   2篇
测绘学   7篇
大气科学   1篇
地球物理   3篇
地质学   4篇
海洋学   2篇
自然地理   1篇
  2021年   1篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2009年   2篇
  2007年   3篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有18条查询结果,搜索用时 234 毫秒
11.
Thomas MacMillan 《Geoforum》2003,34(2):187-201
Biotechnology regulation has been dogged by allegations of bias, usually phrased in terms of ‘conflicts of interest’. Social constructionist analyses of regulatory science have shown up serious epistemological difficulties with such ‘interest’ explanations of regulatory power, but in the process they have also destabilised the platforms such as ‘objectivity’, upon which critiques of regulatory bias are usually grounded. This paper argues that their critical impotence follows from not being constructivist enough. Building on Hajer’s notions of ‘story-lines’ and ‘discourse coalitions’, it argues that recovering the non-human, material components that construct regulation offers sufficiently firm ground for evaluating regulatory power even in the absence of the firm benchmarks assumed by interest accounts. The paper develops this approach by focusing on a single story-line, characterised as ‘scientism’, as it is deployed in the build up to a European Union (EU) ban on bovine somatotrophin, the first food-related product of the ‘new biotechnology’. The essay ends by discussing how far this retrospective analysis can help us to understand and intervene in the current and future EU regulation of biotechnology.  相似文献   
12.
New mid Miocene to present plate tectonic reconstructions of the southern Central American Volcanic Arc (CAVA) reveal that the inception of Cocos Ridge subduction began no earlier than 3 Ma, and possibly as late as 2 Ma. The Cocos Ridge has been displaced from the Malpelo Ridge to the southeast since 9 Ma along the Panama Fracture Zone (PFZ) system. Ambiguous PFZ and Coiba Fracture Zone (CFZ) interaction since 9 Ma precludes conclusively establishing the age of initial Cocos Ridge subduction. Detailed reconstructions based on magnetic anomalies offshore reveal several other variations in subduction parameters beneath southern Central America that preceded subduction of the Cocos Ridge, including southeastward migration of the Nazca–Cocos–Caribbean triple junction along the Middle America Trench (MAT) from 12 Ma to present, and subduction of ≤2 km high scarps both parallel and perpendicular to the trench from 6 to 1 Ma.The timing of changes in subduction processes has commonly been determined by (and correlated with) geologic changes in the upper plate. However, reliable 40Ar/39Ar dating of these events has become available only recently [Abstr. Programs-Geol. Soc. Am. (2002)]. These new dates better constrain the magmatic and structural history of southern Costa Rica. Observations from this data set include: a gap in the volcanic record from 11 to 6 Ma, which coincides temporally with emplacement of most plutons in southern Costa Rica, normal arc volcanism ceased after 3.5 Ma in southern Costa Rica, and Pliocene (mostly 1.5 Ma) adakite volcanism was widely distributed from central Panama to southern Costa Rica (though volumetrically insignificant).This new data reveals that many geologic phenomena, commonly attributed to subduction and underplating of the buoyant Cocos Ridge, in fact precede inception of Cocos Ridge subduction and seem to correlate more favorably in time with earlier tectonic events. Adakite volcanic activity corresponds in space and time with the subduction of a large scarp associated with a tectonic boundary off southern Panama. Regional unconformities and an 11–6 Ma gap in arc volcanism match temporally with oblique subduction of the Nazca plate beneath central and southern Costa Rica. Cessation of volcanic activity, low-temperature cooling of plutons in the Cordillera de Talamanca (CT), and rapid increases in sedimentation in the fore-arc and back-arc basins coincide with passage of the Nazca–Cocos–Caribbean triple junction and initiation of subduction of “rough” crust associated with Cocos–Nazca rifting 3.5 Ma, closely followed by initial subduction of the Cocos Ridge 2–3 Ma. None of the aforementioned geologic events occurred at a time that would allow for underplating by the Cocos Ridge. Rather they are probably related to complex interactions with subduction of complicated plates offshore. All of the aforementioned events indicate that the southern Central American subduction system has been in flux since at least 12 Ma.  相似文献   
13.
14.
The source position time-series for many of the frequently observed radio sources in the NASA geodetic very long baseline interferometry (VLBI) program show systematic linear and non-linear variations of as much as 0.5 mas (milli-arc-seconds) to 1.0 mas, due mainly to source structure changes. In standard terrestrial reference frame (TRF) geodetic solutions, it is a common practice to only estimate a global source position for each source over the entire history of VLBI observing sessions. If apparent source position variations are not modeled, they produce corresponding systematic variations in estimated Earth orientation parameters (EOPs) at the level of 0.02–0.04 mas in nutation and 0.01–0.02 mas in polar motion. We examine the stability of position time-series of the 107 radio sources in the current NASA geodetic source catalog since these sources have relatively dense observing histories from which it is possible to detect systematic variations. We consider different strategies for handling source instabilities where we (1) estimate the positions of unstable sources for each session they are observed, or (2) estimate spline parameters or rate parameters for sources chosen to fit the specific variation seen in the position-time series. We found that some strategies improve VLBI EOP accuracy by reducing the biases and weighted root mean square differences between measurements from independent VLBI networks operating simultaneously. We discuss the problem of identifying frequently observed unstable sources and how to identify new sources to replace these unstable sources in the NASA VLBI geodetic source catalog.  相似文献   
15.
Expanding groundwater datasets collected by automated sensors, and improved groundwater databases, have caused a rapid increase in calibration data available for groundwater modeling projects. Improved methods of subsurface characterization have increased the need for model complexity to represent geological and hydrogeological interpretations. The larger calibration datasets and the need for meaningful predictive uncertainty analysis have both increased the degree of parameterization necessary during model calibration. Due to these competing demands, modern groundwater modeling efforts require a massive degree of parallelization in order to remain computationally tractable. A methodology for the calibration of highly parameterized, computationally expensive models using the Amazon EC2 cloud computing service is presented. The calibration of a regional-scale model of groundwater flow in Alberta, Canada, is provided as an example. The model covers a 30,865-km2 domain and includes 28 hydrostratigraphic units. Aquifer properties were calibrated to more than 1,500 static hydraulic head measurements and 10 years of measurements during industrial groundwater use. Three regionally extensive aquifers were parameterized (with spatially variable hydraulic conductivity fields), as was the aerial recharge boundary condition, leading to 450 adjustable parameters in total. The PEST-based model calibration was parallelized on up to 250 computing nodes located on Amazon’s EC2 servers.  相似文献   
16.
Continental hydrology loading observed by VLBI measurements   总被引:1,自引:1,他引:0  
Variations in continental water storage lead to loading deformation of the crust with typical peak-to-peak variations at very long baseline interferometry (VLBI) sites of 3–15 mm in the vertical component and 1–2 mm in the horizontal component. The hydrology signal at VLBI sites has annual and semi-annual components and clear interannual variations. We have calculated the hydrology loading series using mass loading distributions derived from the global land data assimilation system (GLDAS) hydrology model and alternatively from a global grid of equal-area gravity recovery and climate experiment (GRACE) mascons. In the analysis of the two weekly VLBI 24-h R1 and R4 network sessions from 2003 to 2010 the baseline length repeatabilities are reduced in 79 % (80 %) of baselines when GLDAS (GRACE) loading corrections are applied. Site vertical coordinate repeatabilities are reduced in about 80 % of the sites when either GLDAS or GRACE loading is used. In the horizontal components, reduction occurs in 70–80 % of the sites. Estimates of the annual site vertical amplitudes were reduced for 16 out of 18 sites if either loading series was applied. We estimated loading admittance factors for each site and found that the average admittances were 1.01 \(\pm \) 0.05 for GRACE and 1.39 \(\pm \) 0.07 for GLDAS. The standard deviations of the GRACE admittances and GLDAS admittances were 0.31 and 0.68, respectively. For sites that have been observed in a set of sufficiently temporally dense daily sessions, the average correlation between VLBI vertical monthly averaged series and GLDAS or GRACE loading series was 0.47 and 0.43, respectively.  相似文献   
17.

A large-eddy simulation model is coupled with a Lagrangian cloud model to study marine fog. In this model, aerosols and droplets are treated from a Lagrangian frame of reference, in contrast to the traditional bulk and bin microphysical models. Droplet growth via condensation is governed by Köhler theory and environmental conditions local to the droplet. Coupling to the vapour and temperature fields of the flow ensures mass, momentum, and energy conservation between the air and droplet phases. Based on the recent C-FOG field campaign, a simulation is performed which highlights the benefits and potential of this type of model. By initializing the simulation with the measured aerosol size distribution and making assumptions about the chemical composition of the multiple peaks, the simulations provide a clear explanation for the observed bimodal droplet distribution during C-FOG: high supersaturation levels cause condensational growth of nearly all coarse-mode aerosols (presumed to be composed of marine salt), as well as a large number of accumulation model aerosols (presumed to be of continental origin with a lower hygroscopicity). The largest peak in the resulting droplet distribution is created from coarse-mode aerosols with high hygroscopicity, while the secondary peak is only possible due to the limited impact of the largest peak on saturation levels inside the fog. Thus, for the simulated levels of supersaturation, it is the limited number of coarse-mode aerosols which is responsible for the emergence of a larger second peak.

  相似文献   
18.
An analytical method is provided where the ground water practitioner can quickly determine the size (number of wells) and spacing of a well network capable of meeting a known ground water demand. In order to apply the method, two new parameters are derived that relate theoretical drawdown to the maximum drawdown that is achievable without mining the aquifer. The size of a well network is shown to be proportional to the ground water demand and inversely proportional to the transmissivity and available head. The spacing between wells in a supply well network is shown to be most sensitive to a derived parameter r HA/ 3, which is related to the available head and the propagation of drawdown away from a theoretical well if the total ground water demand was applied to that well. The method can be used to quickly determine the required spacing between wells in well networks of various sizes that are completed in confined aquifers with no leakance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号