首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   5篇
测绘学   4篇
大气科学   31篇
地球物理   16篇
地质学   196篇
海洋学   13篇
天文学   14篇
自然地理   53篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   19篇
  2012年   7篇
  2011年   3篇
  2010年   13篇
  2009年   20篇
  2008年   9篇
  2007年   12篇
  2006年   12篇
  2005年   15篇
  2004年   7篇
  2003年   14篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   14篇
  1997年   21篇
  1996年   15篇
  1995年   5篇
  1994年   17篇
  1993年   7篇
  1992年   11篇
  1991年   11篇
  1990年   16篇
  1989年   8篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1983年   2篇
  1982年   1篇
  1981年   8篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有327条查询结果,搜索用时 5 毫秒
31.
Tunnicliffe, J., Church, M. & Enkin, R. J. 2012 (January): Postglacial sediment yield to Chilliwack Lake, British Columbia, Canada. Boreas, Vol. 41, pp. 84–101. 10.1111/j.1502‐3885.2011.00219.x. ISSN 0300‐9483. Seismic records and evidence from sediment cores at Chilliwack Lake provide the basis for a long‐term (postglacial) sediment budget for a 324‐km2 Cordilleran catchment. Chilliwack Lake (11.8 km2 surface area), situated in the North Cascade Mountains, near Chilliwack, British Columbia, was formed behind a valley‐wide recessional moraine in the final phase of post‐Fraser alpine glaciation. Seismic surveys highlight the postglacial lacustrine record, which is underlain by a thick layer of sediments related to deglacial sedimentation. Sediment cores provide details of grain‐size fining from the delta to the distal lake basin. The cores also show a record of intermittent fire and debris flows. Magnetic measurements of lake sediments provide information on grain size, as well as a dating framework. The total postglacial lake‐floor deposit volume is estimated to be 397 ± 27 × 106 m3. Including estimates of fan and delta deposition, the specific postglacial yield to the lake is calculated to be ~86 ± 13 Mg km2 a?1. The sediment volume in the uppermost (Holocene) lacustrine layer is 128 ± 9 × 106 m3, representing ~41 ± 4 Mg km2 a?1 in the Holocene. Compared with other Cordilleran lakes of similar size, particularly those with glacial cover in the watershed, Chilliwack Lake has experienced relatively modest rates of sediment accumulation. This study provides an important contribution to a growing database of long‐term (postglacial) sediment yield data for major Cordilleran lakes, essential for advancing our understanding of the pace of landscape evolution in formerly glaciated mountainous regions.  相似文献   
32.
The Miocene Siwalik Group (upsection, the Chinji, Nagri, and Dhok Pathan Formations) in northern Pakistan records fluvial and lacustrine environments within the Himalayan foreland basin. Thick (5 m to tens of metres) sandstones are composed of channel bar and fill deposits of low-sinuousity (1·08–1·19), single-channel meandering and braided rivers which formed large, low-gradient sediment fans (or ‘megafans’). River flow was dominantly toward the south-east and likely perennial. Palaeohydraulic reconstructions indicate that Chinji and Dhok Pathan rivers were small relative to Nagri rivers. Bankfull channel depths of Chinji and Dhok Pathan rivers were generally ≤ 15 m, and up to 33 m for Nagri rivers. Widths of channel segments (including single channels of meandering rivers and individual channels around braid bars) were 320–710 m for Chinji rivers, 320–1050 m for Nagri rivers, and 270–340 m for Dhok Pathan rivers. Mean channel bed slopes were on the order of 0·000056–0·00011. Bankfull discharges of channel segments for Chinji and Dhok Pathan rivers were generally 700–800 m3s?1, with full river discharges possibly up to 2400 m3s?1. Bankfull discharges of channel segments for Nagri rivers were generally 1800–3500 m3s?1, with discharges of some larger channel segments possibly on the order of 9000–32 000 m3s?1. Full river discharges of some of the largest Nagri braided rivers may have been twice these values. Thin (decimetres to a few metres) sandstones represent deposits of levees, crevasse channels and splays, floodplain channels, and large sheet floods. Laminated mudstones represent floodplain and lacustrine deposits. Lakes were both perennial and short-lived, and likely less than 10 m deep with maximum fetches on the order of a few tens of kilometres. Trace fossils and body fossils within all facies indicate the former existence of terrestrial vertebrates, molluscs (bivalves and gastropods), arthropods (including insects), worms, aquatic fauna (e.g. fish, turtles, crocodiles), trees, bushes, grasses, and aquatic flora. Palaeoenvironmental reconstructions are consistent with previous palaeoclimatic interpretations of monsoonal conditions.  相似文献   
33.
Newly discovered carbonate laminites are described from the Lincolnshire Limestone Formation (Middle Jurassic, Britain). These occur in the upper peloidal unit of fining-upward rhythms which comprise much of the lagoonal lower Lincolnshire Limestone in south Lincolnshire. The flat, millimetre-scale laminations are of three types: (1) alternating peloid-rich, peloid-poor laminae; (2) alternating bioclastic and peloidal laminae; (3) alternating bioclastic and micritic laminae. In all three types, small-scale cross-laminated sets (usually < 40 mm thick) also occur. The laminite horizons are usually < 150 mm thick and have, in some cases, been traced laterally for ~100 m. The close analogy of these carbonate laminites with siliciclastic counterparts favours their interpretation as tidal rhythmites, mechanically deposited in a low intertidal/shallow subtidal setting. The associated sedimentary features and overall stratigraphic-sedimentologic position of the deposits support this conclusion. According to the literature, mechanically deposited as opposed to algally induced carbonate laminites are rare outside the supratidal realm. Possible reasons for the real or imagined scarcity of intertidal/ subtidal carbonate laminites in ancient sedimentary regimes are discussed.  相似文献   
34.
Geochemical and petrographic data suggest early submarine cementation of hardgrounds from the Lincolnshire Limestone Formation, Middle Jurassic, England. The three hardgrounds, from Cowthick, Castle Bytham and Leadenham quarries, developed in tidal-inlet, on-barrier and lagoonal sub-environments of a carbonate barrier-island complex. At Cowthick early composite (acicular-bladed) radial-fibrous cements, which pre-date aragonite dissolution, completely fill intergranular pore-space at the hardground surface; away from it isopachous fringing cements decrease in thickness. Microprobe analyses demonstrate zoning within the fringes with magnesium concentrations (> 2 wt % MgCO3) higher than those in allochems or later, ferroan cement (?0.5 wt % MgCO3, 1.7 wt % FeCO3). At Castle Bytham early granular isopachous cements, which post-date aragonite dissolution, occur within 5 cm of the surface. At Leadenham early lithification is superficial and represented by ferruginous crusts and micritic internal sediment. Late blocky cement fills residual pore-space in all three examples. Carbon and oxygen isotopic composition of whole-rock samples taken at intervals away from each hardground surface demonstrate the increasing proportion of late 18O depleted cements (δ18O – 8 to – 10). Early cements must have a marine isotopic composition; different δ18O values from each hardground reflect the intensity of early lithification and exclusion of late cements at the hardened surface. There is no isotopic evidence for subaerial cement precipitation during possible emergence at Castle Bytham. Oyster samples (with δ18O, – 2.9 and δ13C, 2.4) give estimated palaeotemperatures of 22–25°C. Early cements from Cowthick are enriched in 18O and 13C (δ18O = 0 δ13C ? 3‰) compared to the oyster values. In conjunction with trace element data this is interpreted as evidence for high-magnesium calcite precursor cements which underwent replacement in a system with a low water: rock ratio. The intensity of early lithification is related to depositional environment: maximum circulation of sea-water producing the most lithified hardground (Cowthick). This is directly analogous to the formation of Recent hardgrounds.  相似文献   
35.
Gypsum and anhydrite fabrics observed in trenches and deep (500 m) cores from Bristol Dry Lake, California, USA, exhibit a vertical alignment of crystals similar to the fabric seen in bottom-nucleated brine pond gypsum. However, geochemical and sedimentological evidence indicate that the gypsum formed in Bristol Dry Lake precipitated displacively within the sediment where groundwater saturated with respect to gypsum recharges around the playa margin (groundwater-seepage gypsum). Evidence for displacive growth of gypsum is: (i) the geometry of the deposit, (ii) stable isotopic data and the water chemistry of the brine, and (iii) inclusions of matrix which follow twin planes and completely surround crystals as they grow. The bulk of the gypsum precipitated in the playa occurs around the edges of the playa in the playamargin facies and completely rings the lake. Sulphate concentrations in the groundwater increase toward the gypsum zone in the playa margin. Basinward of this zone, sulphate concentrations decrease sharply to trace element levels in the basin centre brine. Authigenic gypsum is rare in the centre of the playa. Stable (δ18O values measured for gypsum waters of crystallization (GWC) are similar to the values calculated for groundwater in the playa margin and alluvial fan sediments (?– 6%0), whereas measured brine δ18O values range from + 0·5 to + 3·7%0. Deuterium values measured for groundwater are ?– 70%0, GWC are ?– 60 to – 65%0 and brine values are ?– 57%0. The geometry of the deposit and the chemical data suggest that the water precipitating the gypsum is more closely associated with the groundwater than the brine. However, some mixing between groundwater and brine is likely. Within 100 m of the surface, the gypsum dehydrates to anhydrite, although the same vertically aligned fabric is retained through the diagenetic process. The similarity of displacive vertically aligned gypsum and anhydrite fabrics seen in Bristol Dry Lake to subaqueously deposited gypsum in modern brine ponds indicates that the criteria used to define subaqueous fabrics must be better constrained.  相似文献   
36.
A simulation model of alluvial stratigraphy   总被引:8,自引:0,他引:8  
The quantitative model presented simulates the development of a two-dimensional alluvial sedimentary succession beneath a floodplain traversed by a single major river. Several inter-related effects which influence the distribution of channel-belt sand and gravel bodies within overbank fines are accounted for. These are (a) laterally variable aggradation, (b) compaction of fine sediment, (c) tectonic movement at floodplain margins, and (d) channel avulsion. Selected experiments with the model show how the interconnectedness and areal density of channel-belt deposits decrease with increasing floodplain width/channel-belt size, mean avulsion period, and channel-belt aggradation rate. Separation of stream patterns based on interconnectedness and channel deposit density is difficult. Tectonic movements do not have a significant influence upon the successions unless a preferred direction of tilting is maintained (half-graben). Then channel-belt deposits showing offlap tendencies tend to cluster adjacent to the active floodplain margin, leaving dominantly fine-grained alluvium to accumulate on the inactive side. Individual channel-belt deposits thicken during aggradation, although a self-regulating limit to such thickening is likely to operate. ‘Multistorey’features resulting from aggradation may be difficult to tell apart from those arising through superposition of distinct channel-belt deposits of avulsive origin.  相似文献   
37.
Previous studies of metapelitic rocks from the core of the southernBrittany metamorphic belt suggest a complex clockwise PTevolution. We use pseudosections calculated for an average subaluminousmetapelite composition in the MnNCKFMASH system and averagePT calculations to investigate in more detail the metamorphicevolution of these rocks. For migmatites, sequential occurrenceof kyanite, kyanite + staurolite and sillimanite suggests thata prograde evolution to P > 8 kbar at T  相似文献   
38.
The volume and composition of volcanic rocks associated withthe Gregory rift are interpreted in the light of inversionsperformed on the REE concentrations of the most magnesian basalts.When the estimated volume of salic rock ({small tilde}88 000km3) is converted into basalt ({small tilde}792 000 km3) thetotal volume of basaltic melt generated over the last 30 Myis at least 924 000 km3, corresponding to an average rate ofmelt production of {small tilde}0•03 km3/yr and an averagemelt thickness of between 7 and 26 km everywhere beneath therift. The mean compositions of the basaltic magmas erupted withinthe rift and on the rift flanks during the Upper Oligocene andMiocene, the Pliocene, and the Quaternary are taken to be representativeof the average compositions of melts produced by fractionalmelting in the asthenospheric mantle. When the REE concentrationsof the observed average compositions are inverted they suggestthat much of the melt was produced in the depth and temperaturerange of the transition from garnet to spinel peridotite. Fora mantle potential temperature of {small tilde}1500C the topof the melting region predicted from the inversions is at {smalltilde}70 km beneath the rift axis and {small tilde}80 km beneaththe rift flanks. Within the rift zone the predicted thicknessof melt increases from the Upper Oligocene and Miocene to thePliocene and is always greater than that predicted for the riftflanks, and the timeaveraged thickness of melt predicted is0/5 km. To generate the observed volume of melt the asthenosphericmantle must continually upwell through the melting region (extendingfrom 70 to 150 km) with a vertical velocity of between 40 and140 mm/yr. The results suggest that, volumetrically and compositionally,magmatic activity associated with the Gregory rift is quantitativelyconsistent with a model of a mantle plume upwelling beneaththinned continental lithosphere. Predictions made by such amodel are in broad agreement with geophysical observations. * Present address/reprint requests to: B.P. Exploration, 4/5 Long Walk, Stockley Park, Uxbridge UB11 1BP, UK  相似文献   
39.
Anatectic veins containing the Be minerals khmaralite and berylliansapphirine as primary phases (or surinamite derived therefrom)are associated with Mg–Al-rich paragneisses at three localitiesin the ultrahigh-temperature Napier complex, Antarctica, a uniqueBe mineralization in the granulite facies. Likely precursorsof the paragneisses are volcaniclastic deposits that were hydrothermallyaltered by heated seawater prior to metamorphism. Regular distributionof Be among minerals in the paragneisses suggests an approachto equilibrium with Be greatly concentrated in sapphirine (25–3430ppm Be) or cordierite (560–930 ppm Be) relative to plagioclaseAn53–66 (14–43 ppm Be) > cores of coarse-grainedorthopyroxene (0·7–29 ppm Be) > coronitic orthopyroxene(0·4–14 ppm Be) sillimanite (0·1–26ppm Be) plagioclase An18–33 (0·6–15 ppmBe) > biotite (0·06–8 ppm Be) > K-feldspar,quartz, garnet (0·05–0·7 ppm Be). Sapphirine-bearingparagneisses have average Be concentrations, 4·9 ±2·4 ppm (13 samples), about twice that of typical pelites,whereas paragneisses lacking sapphirine and primary cordieritehave only 2·9 ± 2·1 ppm Be (12 samples),implying some loss of Be during metamorphism. The likely sourcerocks for the Be-rich melts were biotitic rocks lacking theBe sinks sapphirine and cordierite. These gneisses were probablyless competent than the sapphirine-bearing gneisses, so themelts were drawn to the latter and collected in spaces openedduring deformation and boudinage of the more competent paragneisses.Fractionation of the melts concentrated Be to the extent thatBe minerals could crystallize. The final result was Be-mineralizedanatectic veins hosted by relatively Be-rich sapphirine-bearingparagneisses. KEY WORDS: Antarctica; beryllium; granulite facies; microprobe; sapphirine  相似文献   
40.
The Miocene Siwalik Group (upsection, the Chinji, Nagri, and Dhok Pathan Formations) in northern Pakistan records evolving fluvial systems within the Himalayan foreland basin. Sedimentological variations are evaluated with respect to local, regional, and global controls on fluvial deposition and basin filling. Thick (5 m to tens of metres) sandstones are composed of channel bar and fill deposits of low-sinuosity, meandering and braided rivers which formed large, low-gradient sediment fans (or ‘megafans'). River flow was dominantly toward the south-east. The proportion of thick sandstones varies in all Siwalik sections on three scales, and reflects similar variations in palaeochannel size and grain size: (1) small-scale variations are generally tens of metres thick, and reflect the alternation of thick sandstones (channel-belt deposits) and mudstone-dominated strata (overbank deposits) through the section; (2) medium-scale variations are roughly one-hundred to a few hundreds of metres thick, and primarily correspond to changes in channel-deposit thickness, but also to the degree of superposition of channel deposits and/or to changes in the number of channel-belt deposits per unit of section; and (3) large-scale variations (formation-scale) are greater than one km thick, and primarily correspond to changes in channel-deposit thickness. Time-scales of small-, medium-, and large-scale variations appear to be on the order of 104, 105 and 106 years, respectively. The Chinji-Nagri transition is characterized by increases in channel-deposit proportion, sandstone thickness, palaeochannel size and discharge, mean grain size of sandstones, and sediment accumulation rates; and a decrease in avulsion period. The Nagri-Dhok Pathan transition is characterized by decreases in channel-deposit proportion, sandstone thickness, palaeochannel size and discharge, mean grain size of sandstones, and avulsion period; and a further increase in sediment accumulation rates. Formation boundaries across the Potwar Plateau decrease in age toward the west. The Chinji-Nagri transition ranges in age from ~ 10·9–12·7 Ma, and the Nagri-Dhok Pathan transition ranges in age from ~9·3–10·1 Ma. Small-scale variations are attributable to repeated river avulsions triggered by autocyclic processes and/or mountain-front tectonism (e.g. faulting, earthquakes). Medium-scale variations are attributable to local changes in the position of large sediment fans, also triggered by autocyclic processes and/or mountain-front tectonism. The Chinji-Nagri transition records the diversion or establishment (possibly due to river piracy) of a larger river system in the area. River diversion or piracy probably took place within the mountain belt and is attributable to increasing and spatially variable mountain-belt uplift rates, and possibly the development of associated mountain-front deformational structures. The Nagri-Dhok Pathan transition records the diversion of the larger river system out of the area and the establishment of a smaller river system. This diversion is attributable to progressively increasing rates of mountain-belt uplift and basin subsidence. The regional palaeoclimate throughout the time interval studied was apparently constant, and eustatic sea level changes apparently had no effect on deposition in the area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号