首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   4篇
测绘学   5篇
大气科学   31篇
地球物理   16篇
地质学   196篇
海洋学   13篇
天文学   14篇
自然地理   53篇
  2024年   1篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   19篇
  2012年   7篇
  2011年   3篇
  2010年   13篇
  2009年   20篇
  2008年   9篇
  2007年   12篇
  2006年   12篇
  2005年   15篇
  2004年   7篇
  2003年   14篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   14篇
  1997年   21篇
  1996年   15篇
  1995年   5篇
  1994年   17篇
  1993年   7篇
  1992年   11篇
  1991年   11篇
  1990年   16篇
  1989年   8篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1983年   2篇
  1982年   1篇
  1981年   8篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有328条查询结果,搜索用时 15 毫秒
1.
The growth of Glasgow from a small town into a heavily industrialised conurbation depended greatly on its local geological riches. Extensive mining and quarrying of a range of minerals took place from the 18th century onwards. The early underground stoop and room (pillar and stall) workings, and the backfilled quarries, together with variably consolidated natural superficial deposits, have bequeathed to the city a heritage of unwanted engineering problems which cannot easily be quantified. Recent work by the British Geological Survey (BGS) illustrates the scale of both geological and man-made problems.  相似文献   
2.
3.
4.
5.
GEOGRAPHY IN AMERICA AT THE DAWN OF THE 21ST CENTURY. Edited by GARY L. GAILE and CORT J. WILLMOTT.  相似文献   
6.
Southwest Japan is divided into Outer and Inner Zones by the Median Tectonic Line (MTL), a major transcurrent fault. The Outer Zone is composed of the Sambagawa (high-pressure intermediate or high P/T type metamorphism), Chichibu and Shimanto Belts. In the Inner Zone, the Ryoke Belt (andalusite– sillimanite or low P/T type metamorphism) was developed mainly within a Jurassic accretionary complex. This spatial relationship between high P/T type and low P/T type metamorphic belts led Miyashiro to the idea that metamorphic belts were developed as ‘paired’ systems. Textural relationships and petrogenetically significant mineral assemblages in pelites from the Ryoke Belt imply peak PT conditions of ≈5 kbar and up to 850 °C in migmatitic garnet–cordierite rocks from the highest-grade metamorphic zone. It is likely that the thermal anomaly responsible for metamorphism of the Ryoke Belt was related to a segment of the Farallon–Izanagi Ridge as it subducted under the eastern margin of the Asian continent during the Cretaceous. The sequence of mineral assemblages developed in pelites implies a metamorphic field gradient with shallow dP/dT slope, inferred to have been generated by a nested set of hairpin-like ‘clockwise’PT paths. These PT paths are characterized by limited prograde thickening, minor decompression at peak-T , and near-isobaric cooling, features that may be typical of PT paths in low P/T type metamorphic belts caused by ridge subduction. A ridge subduction model for the Ryoke Belt implies that juxtaposition of the high-P/T metamorphic rocks of the Sambagawa Belt against it was a result of terrane amalgamation. Belt-parallel ductile stretching, recorded as syn-metamorphic, predominantly constrictional strain in both Ryoke and Sambagawa Belt rocks, and substantial sinistral displacement on the MTL are consistent with left-lateral oblique convergence. Diachroneity in fast cooling of the Ryoke Belt is implied by extant thermochronological data, and is inferred to relate to progressive SW to NE docking of the Sambagawa Belt. Thus, an alternative interpretation of ‘paired’ metamorphic belts in Japan is that they represent laterally contemporaneous terranes, rather than outboard and inboard components of a trench/arc ‘paired’ system. Amalgamation of laterally contemporaneous terranes during large translations of forearcs along continental margins may explain other examples of ‘paired’ metamorphic belts in the geological record.  相似文献   
7.
8.
Two isotopically distinct but otherwise chemically similar leucogranitesuites in the Proterozoic Horney Peak Granite, Black Hills,South Dakota, have contrasting light rare earth element (LREE)concentrations. Most samples of a relatively 18O-depleted suitehave LREE- enriched, chondrite-normalized patterns, typicalof melts derived from metasedimentary protoliths, whereas allsamples of the regionally significant, relatively 18O-enrichedsuite have LREE-depleted patterns. The latter patterns are interpretedto have resulted from disequilibrium melting of schists. Monaziteand perhaps other accessory minerals remained armored by biotiteand garnet which did not partake in the muscovite dehydration-meltingreaction that produced LREE-depleted melts. The REE concentrationsin the LREE-depleted samples are below saturation levels formonazite at reasonable melting temperatures and melt water contents,whereas the REE concentrations in the LREE-enriched samplesyield 700–800C monazite saturation temperatures, reasonablefor biotite dehydration-melting reactions. LREE depletions,analogous to those in the LREE-depleted granites, are also foundin leucosomes of partially molten schists, thought to be theprotolith for the granite. In contrast, the melanosomes holdthe accessory minerals and bulk of the LREEs. KEY WORDS: accessory minerals; leucogranites; Black Hills; monazite; partial melting *Corresponding author at Department of Geological Sciences, University of Missouri. Telephone: 314-884-6463. Fax: 314-882-5458. e-mail: geolpin{at}showme.missouri.edu.  相似文献   
9.
The Miocene Siwalik Group (upsection, the Chinji, Nagri, and Dhok Pathan Formations) in northern Pakistan records fluvial and lacustrine environments within the Himalayan foreland basin. Thick (5 m to tens of metres) sandstones are composed of channel bar and fill deposits of low-sinuousity (1·08–1·19), single-channel meandering and braided rivers which formed large, low-gradient sediment fans (or ‘megafans’). River flow was dominantly toward the south-east and likely perennial. Palaeohydraulic reconstructions indicate that Chinji and Dhok Pathan rivers were small relative to Nagri rivers. Bankfull channel depths of Chinji and Dhok Pathan rivers were generally ≤ 15 m, and up to 33 m for Nagri rivers. Widths of channel segments (including single channels of meandering rivers and individual channels around braid bars) were 320–710 m for Chinji rivers, 320–1050 m for Nagri rivers, and 270–340 m for Dhok Pathan rivers. Mean channel bed slopes were on the order of 0·000056–0·00011. Bankfull discharges of channel segments for Chinji and Dhok Pathan rivers were generally 700–800 m3s?1, with full river discharges possibly up to 2400 m3s?1. Bankfull discharges of channel segments for Nagri rivers were generally 1800–3500 m3s?1, with discharges of some larger channel segments possibly on the order of 9000–32 000 m3s?1. Full river discharges of some of the largest Nagri braided rivers may have been twice these values. Thin (decimetres to a few metres) sandstones represent deposits of levees, crevasse channels and splays, floodplain channels, and large sheet floods. Laminated mudstones represent floodplain and lacustrine deposits. Lakes were both perennial and short-lived, and likely less than 10 m deep with maximum fetches on the order of a few tens of kilometres. Trace fossils and body fossils within all facies indicate the former existence of terrestrial vertebrates, molluscs (bivalves and gastropods), arthropods (including insects), worms, aquatic fauna (e.g. fish, turtles, crocodiles), trees, bushes, grasses, and aquatic flora. Palaeoenvironmental reconstructions are consistent with previous palaeoclimatic interpretations of monsoonal conditions.  相似文献   
10.
Gypsum and anhydrite fabrics observed in trenches and deep (500 m) cores from Bristol Dry Lake, California, USA, exhibit a vertical alignment of crystals similar to the fabric seen in bottom-nucleated brine pond gypsum. However, geochemical and sedimentological evidence indicate that the gypsum formed in Bristol Dry Lake precipitated displacively within the sediment where groundwater saturated with respect to gypsum recharges around the playa margin (groundwater-seepage gypsum). Evidence for displacive growth of gypsum is: (i) the geometry of the deposit, (ii) stable isotopic data and the water chemistry of the brine, and (iii) inclusions of matrix which follow twin planes and completely surround crystals as they grow. The bulk of the gypsum precipitated in the playa occurs around the edges of the playa in the playamargin facies and completely rings the lake. Sulphate concentrations in the groundwater increase toward the gypsum zone in the playa margin. Basinward of this zone, sulphate concentrations decrease sharply to trace element levels in the basin centre brine. Authigenic gypsum is rare in the centre of the playa. Stable (δ18O values measured for gypsum waters of crystallization (GWC) are similar to the values calculated for groundwater in the playa margin and alluvial fan sediments (?– 6%0), whereas measured brine δ18O values range from + 0·5 to + 3·7%0. Deuterium values measured for groundwater are ?– 70%0, GWC are ?– 60 to – 65%0 and brine values are ?– 57%0. The geometry of the deposit and the chemical data suggest that the water precipitating the gypsum is more closely associated with the groundwater than the brine. However, some mixing between groundwater and brine is likely. Within 100 m of the surface, the gypsum dehydrates to anhydrite, although the same vertically aligned fabric is retained through the diagenetic process. The similarity of displacive vertically aligned gypsum and anhydrite fabrics seen in Bristol Dry Lake to subaqueously deposited gypsum in modern brine ponds indicates that the criteria used to define subaqueous fabrics must be better constrained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号