首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   5篇
测绘学   5篇
大气科学   31篇
地球物理   16篇
地质学   196篇
海洋学   13篇
天文学   14篇
自然地理   53篇
  2024年   1篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   19篇
  2012年   7篇
  2011年   3篇
  2010年   13篇
  2009年   20篇
  2008年   9篇
  2007年   12篇
  2006年   12篇
  2005年   15篇
  2004年   7篇
  2003年   14篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   14篇
  1997年   21篇
  1996年   15篇
  1995年   5篇
  1994年   17篇
  1993年   7篇
  1992年   11篇
  1991年   11篇
  1990年   16篇
  1989年   8篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1983年   2篇
  1982年   1篇
  1981年   8篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有328条查询结果,搜索用时 15 毫秒
1.
The growth of Glasgow from a small town into a heavily industrialised conurbation depended greatly on its local geological riches. Extensive mining and quarrying of a range of minerals took place from the 18th century onwards. The early underground stoop and room (pillar and stall) workings, and the backfilled quarries, together with variably consolidated natural superficial deposits, have bequeathed to the city a heritage of unwanted engineering problems which cannot easily be quantified. Recent work by the British Geological Survey (BGS) illustrates the scale of both geological and man-made problems.  相似文献   
2.
3.
4.
5.
The Miocene Siwalik Group (upsection, the Chinji, Nagri, and Dhok Pathan Formations) in northern Pakistan records fluvial and lacustrine environments within the Himalayan foreland basin. Thick (5 m to tens of metres) sandstones are composed of channel bar and fill deposits of low-sinuousity (1·08–1·19), single-channel meandering and braided rivers which formed large, low-gradient sediment fans (or ‘megafans’). River flow was dominantly toward the south-east and likely perennial. Palaeohydraulic reconstructions indicate that Chinji and Dhok Pathan rivers were small relative to Nagri rivers. Bankfull channel depths of Chinji and Dhok Pathan rivers were generally ≤ 15 m, and up to 33 m for Nagri rivers. Widths of channel segments (including single channels of meandering rivers and individual channels around braid bars) were 320–710 m for Chinji rivers, 320–1050 m for Nagri rivers, and 270–340 m for Dhok Pathan rivers. Mean channel bed slopes were on the order of 0·000056–0·00011. Bankfull discharges of channel segments for Chinji and Dhok Pathan rivers were generally 700–800 m3s?1, with full river discharges possibly up to 2400 m3s?1. Bankfull discharges of channel segments for Nagri rivers were generally 1800–3500 m3s?1, with discharges of some larger channel segments possibly on the order of 9000–32 000 m3s?1. Full river discharges of some of the largest Nagri braided rivers may have been twice these values. Thin (decimetres to a few metres) sandstones represent deposits of levees, crevasse channels and splays, floodplain channels, and large sheet floods. Laminated mudstones represent floodplain and lacustrine deposits. Lakes were both perennial and short-lived, and likely less than 10 m deep with maximum fetches on the order of a few tens of kilometres. Trace fossils and body fossils within all facies indicate the former existence of terrestrial vertebrates, molluscs (bivalves and gastropods), arthropods (including insects), worms, aquatic fauna (e.g. fish, turtles, crocodiles), trees, bushes, grasses, and aquatic flora. Palaeoenvironmental reconstructions are consistent with previous palaeoclimatic interpretations of monsoonal conditions.  相似文献   
6.
Gypsum and anhydrite fabrics observed in trenches and deep (500 m) cores from Bristol Dry Lake, California, USA, exhibit a vertical alignment of crystals similar to the fabric seen in bottom-nucleated brine pond gypsum. However, geochemical and sedimentological evidence indicate that the gypsum formed in Bristol Dry Lake precipitated displacively within the sediment where groundwater saturated with respect to gypsum recharges around the playa margin (groundwater-seepage gypsum). Evidence for displacive growth of gypsum is: (i) the geometry of the deposit, (ii) stable isotopic data and the water chemistry of the brine, and (iii) inclusions of matrix which follow twin planes and completely surround crystals as they grow. The bulk of the gypsum precipitated in the playa occurs around the edges of the playa in the playamargin facies and completely rings the lake. Sulphate concentrations in the groundwater increase toward the gypsum zone in the playa margin. Basinward of this zone, sulphate concentrations decrease sharply to trace element levels in the basin centre brine. Authigenic gypsum is rare in the centre of the playa. Stable (δ18O values measured for gypsum waters of crystallization (GWC) are similar to the values calculated for groundwater in the playa margin and alluvial fan sediments (?– 6%0), whereas measured brine δ18O values range from + 0·5 to + 3·7%0. Deuterium values measured for groundwater are ?– 70%0, GWC are ?– 60 to – 65%0 and brine values are ?– 57%0. The geometry of the deposit and the chemical data suggest that the water precipitating the gypsum is more closely associated with the groundwater than the brine. However, some mixing between groundwater and brine is likely. Within 100 m of the surface, the gypsum dehydrates to anhydrite, although the same vertically aligned fabric is retained through the diagenetic process. The similarity of displacive vertically aligned gypsum and anhydrite fabrics seen in Bristol Dry Lake to subaqueously deposited gypsum in modern brine ponds indicates that the criteria used to define subaqueous fabrics must be better constrained.  相似文献   
7.
Late Pleistocene glacial and lake history of northwestern Russia   总被引:1,自引:0,他引:1  
Five regionally significant Weichselian glacial events, each separated by terrestrial and marine interstadial conditions, are described from northwestern Russia. The first glacial event took place in the Early Weichselian. An ice sheet centred in the Kara Sea area dammed up a large lake in the Pechora lowland. Water was discharged across a threshold on the Timan Ridge and via an ice-free corridor between the Scandinavian Ice Sheet and the Kara Sea Ice Sheet to the west and north into the Barents Sea. The next glaciation occurred around 75-70 kyr BP after an interstadial episode that lasted c. 15 kyr. A local ice cap developed over the Timan Ridge at the transition to the Middle Weichselian. Shortly after deglaciation of the Timan ice cap, an ice sheet centred in the Barents Sea reached the area. The configuration of this ice sheet suggests that it was confluent with the Scandinavian Ice Sheet. Consequently, around 70-65 kyr BP a huge ice-dammed lake formed in the White Sea basin (the 'White Sea Lake'), only now the outlet across the Timan Ridge discharged water eastward into the Pechora area. The Barents Sea Ice Sheet likely suffered marine down-draw that led to its rapid collapse. The White Sea Lake drained into the Barents Sea, and marine inundation and interstadial conditions followed between 65 and 55 kyr BP. The glaciation that followed was centred in the Kara Sea area around 55-45 kyr BP. Northward directed fluvial runoff in the Arkhangelsk region indicates that the Kara Sea Ice Sheet was independent of the Scandinavian Ice Sheet and that the Barents Sea remained ice free. This glaciation was succeeded by a c. 20-kyr-long ice-free and periglacial period before the Scandinavian Ice Sheet invaded from the west, and joined with the Barents Sea Ice Sheet in the northernmost areas of northwestern Russia. The study area seems to be the only region that was invaded by all three ice sheets during the Weichselian. A general increase in ice-sheet size and the westwards migrating ice-sheet dominance with time was reversed in Middle Weichselian time to an easterly dominated ice-sheet configuration. This sequence of events resulted in a complex lake history with spillways being re-used and ice-dammed lakes appearing at different places along the ice margins at different times.  相似文献   
8.
Newly discovered carbonate laminites are described from the Lincolnshire Limestone Formation (Middle Jurassic, Britain). These occur in the upper peloidal unit of fining-upward rhythms which comprise much of the lagoonal lower Lincolnshire Limestone in south Lincolnshire. The flat, millimetre-scale laminations are of three types: (1) alternating peloid-rich, peloid-poor laminae; (2) alternating bioclastic and peloidal laminae; (3) alternating bioclastic and micritic laminae. In all three types, small-scale cross-laminated sets (usually < 40 mm thick) also occur. The laminite horizons are usually < 150 mm thick and have, in some cases, been traced laterally for ~100 m. The close analogy of these carbonate laminites with siliciclastic counterparts favours their interpretation as tidal rhythmites, mechanically deposited in a low intertidal/shallow subtidal setting. The associated sedimentary features and overall stratigraphic-sedimentologic position of the deposits support this conclusion. According to the literature, mechanically deposited as opposed to algally induced carbonate laminites are rare outside the supratidal realm. Possible reasons for the real or imagined scarcity of intertidal/ subtidal carbonate laminites in ancient sedimentary regimes are discussed.  相似文献   
9.
ABSTRACT The high-grade migmatitic core to the southern Brittany metamorphic belt has mineralogical and textural features that suggest high-temperature decompression. The chronology of this decompression and subsequent cooling history have been constrained with 40Ar/39 Ar ages determined for multigrain concentrates of hornblende and muscovite prepared from amphibolite and late-orogenic granite sheets within the migmatitic core, and from amphibolite of the structurally overlying unit. Three hornblende concentrates yield plateau isotope correlation ages of c. 303–298 Ma. Two muscovite concentrates record well-defined plateau ages of c. 306–305 Ma. These ages are geologically significant and date the last cooling through temperatures required for intracrystalline retention of radiogenic argon. The concordancy of the hornblende and muscovite ages suggest rapid post-metamorphic cooling. Extant geochronology and the new 40Ar/39Ar data suggest a minimum time-integrated average cooling rate between c. 725 °C and c. 125 °C of c. 14 ± 4°C Ma-1, although below 600 °C the data permit an infinitely fast rate of cooling. Mineral assemblages and reaction textures in diatexite migmatites suggest c. 4 kbar decompression at 800–750 °C. This must have pre-dated the rapid cooling. Emplacement of two-mica granites into the metamorphic belt occurred between 345 and 300 Ma. The youngest plutons were emplaced synkinematically along shallow-dipping normal faults interpreted to be reactivated Eo-Variscan thrusts. A penetrative, west-plunging stretching lineation developed in these granites suggests that extension was orogen-parallel. Extension was probably related to regional uplift and gravitational collapse of thermally weakened crust during constrictional (escape) tectonics in this narrow part of the Variscan orogen. This followed slab breakoff during the terminal stages of convergence between Gondwana and Laurasia; detachment may have been consequent upon a change in kinematics leading to dextral displacement within the orogen. Dextral ductile strike-slip displacement was concentrated in granites emplaced synkinematically along the South Armorican Shear Zone. Rapid cooling is interpreted to have resulted from tectonic unroofing with emplacement of granite along decollement surfaces. The high-grade migmatitic core of the southern Brittany metamorphic belt represents a type of metamorphic core complex formed during orogen-parallel extensional unroofing and regional-scale ductile flow.  相似文献   
10.
Numerous freshwater ecosystems, dense concentrations of humans along the eastern seaboard, extensive forests and a history of intensive land use distinguish the New England/Mid-Atlantic Region. Human population densities are forecast to increase in portions of the region at the same time that climate is expected to be changing. Consequently, the effects of humans and climatic change are likely to affect freshwater ecosystems within the region interactively. The general climate, at present, is humid continental, and the region receives abundant precipitation. Climatic projections for a 2 × CO2 atmosphere, however, suggest warmer and drier conditions for much of this region. Annual temperature increases ranging from 3–5°C are projected, with the greatest increases occurring in autumn or winter. According to a water balance model, the projected increase in temperature will result in greater rates of evaporation and evapotranspiration. This could cause a 21 and 31% reduction in annual stream flow in the southern and northern sections of the region, respectively, with greatest reductions occurring in autumn and winter. The amount and duration of snow cover is also projected to decrease across the region, and summer convective thunderstorms are likely to decrease in frequency but increase in intensity. The dual effects of climate change and direct anthropogenic stress will most likely alter hydrological and biogeochemical processes, and, hence, the floral and faunal communities of the region's freshwater ecosystems. For example, the projected increase in evapotranspiration and evaporation could eliminate most bog ecosystems, and increases in water temperature may increase bioaccumulation, and possibly biomagnification, of organic and inorganic contaminants. Not all change may be adverse. For example, a decrease in runoff may reduce the intensity of ongoing estuarine eutrophication, and acidification of aquatic habitats during the spring snowmelt period may be ameliorated. Recommendations for future monitoring efforts include: (1) extending and improving data on the distribution, abundance and effect of anthropogenic stressors (non-point pollution) within the region; and (2) improving scientific knowledge regarding the contemporary distribution and abundance of aquatic species. Research recommendations include: (1) establishing a research centre(s) where field studies designed to understand interactions between freshwater ecosystems and climate change can be conducted; (2) projecting the future distribution, activities and direct effects of humans within the region; (3) developing mathematical analyses, experimental designs and aquatic indicators that distinguish between climatic and anthropogenic effects on aquatic systems; (4) developing and refining projections of climate variability such that the magnitude, frequency and seasonal timing of extreme events can be forecast; and (5) describing quantitatively the flux of materials (sediments, nutrients, metals) from watersheds characterized by a mosaic of land uses. © 1997 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号