首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   5篇
测绘学   4篇
大气科学   32篇
地球物理   16篇
地质学   196篇
海洋学   13篇
天文学   14篇
自然地理   53篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   19篇
  2012年   7篇
  2011年   3篇
  2010年   13篇
  2009年   21篇
  2008年   9篇
  2007年   12篇
  2006年   12篇
  2005年   15篇
  2004年   7篇
  2003年   14篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   14篇
  1997年   21篇
  1996年   15篇
  1995年   5篇
  1994年   17篇
  1993年   7篇
  1992年   11篇
  1991年   11篇
  1990年   16篇
  1989年   8篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1983年   2篇
  1982年   1篇
  1981年   8篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有328条查询结果,搜索用时 0 毫秒
21.
The Miocene Siwalik Group (upsection, the Chinji, Nagri, and Dhok Pathan Formations) in northern Pakistan records evolving fluvial systems within the Himalayan foreland basin. Sedimentological variations are evaluated with respect to local, regional, and global controls on fluvial deposition and basin filling. Thick (5 m to tens of metres) sandstones are composed of channel bar and fill deposits of low-sinuosity, meandering and braided rivers which formed large, low-gradient sediment fans (or ‘megafans'). River flow was dominantly toward the south-east. The proportion of thick sandstones varies in all Siwalik sections on three scales, and reflects similar variations in palaeochannel size and grain size: (1) small-scale variations are generally tens of metres thick, and reflect the alternation of thick sandstones (channel-belt deposits) and mudstone-dominated strata (overbank deposits) through the section; (2) medium-scale variations are roughly one-hundred to a few hundreds of metres thick, and primarily correspond to changes in channel-deposit thickness, but also to the degree of superposition of channel deposits and/or to changes in the number of channel-belt deposits per unit of section; and (3) large-scale variations (formation-scale) are greater than one km thick, and primarily correspond to changes in channel-deposit thickness. Time-scales of small-, medium-, and large-scale variations appear to be on the order of 104, 105 and 106 years, respectively. The Chinji-Nagri transition is characterized by increases in channel-deposit proportion, sandstone thickness, palaeochannel size and discharge, mean grain size of sandstones, and sediment accumulation rates; and a decrease in avulsion period. The Nagri-Dhok Pathan transition is characterized by decreases in channel-deposit proportion, sandstone thickness, palaeochannel size and discharge, mean grain size of sandstones, and avulsion period; and a further increase in sediment accumulation rates. Formation boundaries across the Potwar Plateau decrease in age toward the west. The Chinji-Nagri transition ranges in age from ~ 10·9–12·7 Ma, and the Nagri-Dhok Pathan transition ranges in age from ~9·3–10·1 Ma. Small-scale variations are attributable to repeated river avulsions triggered by autocyclic processes and/or mountain-front tectonism (e.g. faulting, earthquakes). Medium-scale variations are attributable to local changes in the position of large sediment fans, also triggered by autocyclic processes and/or mountain-front tectonism. The Chinji-Nagri transition records the diversion or establishment (possibly due to river piracy) of a larger river system in the area. River diversion or piracy probably took place within the mountain belt and is attributable to increasing and spatially variable mountain-belt uplift rates, and possibly the development of associated mountain-front deformational structures. The Nagri-Dhok Pathan transition records the diversion of the larger river system out of the area and the establishment of a smaller river system. This diversion is attributable to progressively increasing rates of mountain-belt uplift and basin subsidence. The regional palaeoclimate throughout the time interval studied was apparently constant, and eustatic sea level changes apparently had no effect on deposition in the area.  相似文献   
22.
ABSTRACT The high-grade migmatitic core to the southern Brittany metamorphic belt has mineralogical and textural features that suggest high-temperature decompression. The chronology of this decompression and subsequent cooling history have been constrained with 40Ar/39 Ar ages determined for multigrain concentrates of hornblende and muscovite prepared from amphibolite and late-orogenic granite sheets within the migmatitic core, and from amphibolite of the structurally overlying unit. Three hornblende concentrates yield plateau isotope correlation ages of c. 303–298 Ma. Two muscovite concentrates record well-defined plateau ages of c. 306–305 Ma. These ages are geologically significant and date the last cooling through temperatures required for intracrystalline retention of radiogenic argon. The concordancy of the hornblende and muscovite ages suggest rapid post-metamorphic cooling. Extant geochronology and the new 40Ar/39Ar data suggest a minimum time-integrated average cooling rate between c. 725 °C and c. 125 °C of c. 14 ± 4°C Ma-1, although below 600 °C the data permit an infinitely fast rate of cooling. Mineral assemblages and reaction textures in diatexite migmatites suggest c. 4 kbar decompression at 800–750 °C. This must have pre-dated the rapid cooling. Emplacement of two-mica granites into the metamorphic belt occurred between 345 and 300 Ma. The youngest plutons were emplaced synkinematically along shallow-dipping normal faults interpreted to be reactivated Eo-Variscan thrusts. A penetrative, west-plunging stretching lineation developed in these granites suggests that extension was orogen-parallel. Extension was probably related to regional uplift and gravitational collapse of thermally weakened crust during constrictional (escape) tectonics in this narrow part of the Variscan orogen. This followed slab breakoff during the terminal stages of convergence between Gondwana and Laurasia; detachment may have been consequent upon a change in kinematics leading to dextral displacement within the orogen. Dextral ductile strike-slip displacement was concentrated in granites emplaced synkinematically along the South Armorican Shear Zone. Rapid cooling is interpreted to have resulted from tectonic unroofing with emplacement of granite along decollement surfaces. The high-grade migmatitic core of the southern Brittany metamorphic belt represents a type of metamorphic core complex formed during orogen-parallel extensional unroofing and regional-scale ductile flow.  相似文献   
23.
The Red Hill complex of New Hampshire is unusual for the WhiteMountain Magma Series of northern New England because it consistsof both silica-undersaturated and -saturated to -oversaturatedsyenites. Amphibole, pyroxene, and apatite in two of the saturatedunits, the Outer Coarse Syenite (OCS) and the Garland Peak Syenite(GPS), and in the undersaturated Nepheline Sodalite Syenite(NSS), were analyzed to determine the relationship between coexistingunder-saturated and saturated magmas. Mafic enclaves in theNSS and the GPS were also studied to elucidate their relationshipswith the host syenites. In addition to mafic enclaves, the NSS contains later emplacedcamptonitic dikes and associated pipe-like benmoreites. Thebenmoreites contain amphibole that is compositionally continuouswith amphibole in the NSS. However, REE and other trace elementabundances in apatite from the benmoreites and the NSS are notcompatible with a genetic relationship between the two. Maficenclaves within the NSS contain amphibole and pyroxene thatare compositionally continuous with the NSS. Bulk-rock compositionsof the enclaves plot along trends defined by the NSS. Furthermore,chondrite-normalized REE patterns for apatite in both the enclavesand the NSS are parallel, and REE abundances increase systematicallyfrom the enclaves to the NSS. We therefore suggest that theenclaves represent magmas similar to the NSS parent that intrudedup into its daughter products. These magmas appear to have beentephritic to phonotephritic in composition. Abundances of REE in apatite in the Nepheline Sodalite Syenite(NSS) are distinct from those in apatite in the silica-saturatedOCS. OCS apatites have LREE abundances up to 26 000 times chondritesand La/Yb ratios of 16–27. NSS apatites have comparableLREE concentrations, but HREE abundances are considerably lowerthan those of the OCS; La/Yb ratios range from 68 to 104. Theseobserved differences in both the REE and other trace elementabundances between apatite in the two rocks present difficultieswith a common parental magma hypothesis for the NSS and OCS.Hence it is suggested that, although the OCS and NSS are contemporaneousin time and space, they are probably not consanguineous. The silica-saturated GPS is a fine-grained syenite containingstrongly zoned amphiboles with kaersutite to hastingsite coresrimmed by hastingsitic hornblende and ferro-hornblende. Discretegrains of hastingsitic hornblende and ferro-hornblende occurin a feldspar-quartz groundmass. Coarser-grained, quartz-richpatches, containing feldspars and ferro-hornblende and ferroedenite,are also found in the GPS. The kaersutite cores are identicalto the amphibole in the GPS enclaves and the NSS suite. TheseGPS enclaves are silica undersaturated; the kaersutite coresin the GPS host rocks are probably xenocrysts derived from disaggregatedundersaturated magmas similar to that represented by the enclaves.  相似文献   
24.
25.
Numerous freshwater ecosystems, dense concentrations of humans along the eastern seaboard, extensive forests and a history of intensive land use distinguish the New England/Mid-Atlantic Region. Human population densities are forecast to increase in portions of the region at the same time that climate is expected to be changing. Consequently, the effects of humans and climatic change are likely to affect freshwater ecosystems within the region interactively. The general climate, at present, is humid continental, and the region receives abundant precipitation. Climatic projections for a 2 × CO2 atmosphere, however, suggest warmer and drier conditions for much of this region. Annual temperature increases ranging from 3–5°C are projected, with the greatest increases occurring in autumn or winter. According to a water balance model, the projected increase in temperature will result in greater rates of evaporation and evapotranspiration. This could cause a 21 and 31% reduction in annual stream flow in the southern and northern sections of the region, respectively, with greatest reductions occurring in autumn and winter. The amount and duration of snow cover is also projected to decrease across the region, and summer convective thunderstorms are likely to decrease in frequency but increase in intensity. The dual effects of climate change and direct anthropogenic stress will most likely alter hydrological and biogeochemical processes, and, hence, the floral and faunal communities of the region's freshwater ecosystems. For example, the projected increase in evapotranspiration and evaporation could eliminate most bog ecosystems, and increases in water temperature may increase bioaccumulation, and possibly biomagnification, of organic and inorganic contaminants. Not all change may be adverse. For example, a decrease in runoff may reduce the intensity of ongoing estuarine eutrophication, and acidification of aquatic habitats during the spring snowmelt period may be ameliorated. Recommendations for future monitoring efforts include: (1) extending and improving data on the distribution, abundance and effect of anthropogenic stressors (non-point pollution) within the region; and (2) improving scientific knowledge regarding the contemporary distribution and abundance of aquatic species. Research recommendations include: (1) establishing a research centre(s) where field studies designed to understand interactions between freshwater ecosystems and climate change can be conducted; (2) projecting the future distribution, activities and direct effects of humans within the region; (3) developing mathematical analyses, experimental designs and aquatic indicators that distinguish between climatic and anthropogenic effects on aquatic systems; (4) developing and refining projections of climate variability such that the magnitude, frequency and seasonal timing of extreme events can be forecast; and (5) describing quantitatively the flux of materials (sediments, nutrients, metals) from watersheds characterized by a mosaic of land uses. © 1997 John Wiley & Sons, Ltd.  相似文献   
26.
Chemically inert and physically hard minerals, of which zircon is universally present and usually abundant, are minor but important components of glacial gold and tin placer deposits. Zircons and other much less common resistant minerals inflict major damage on light minerals, of which quartz is the dominant, chemically resistant member. Because of its sharpness inherited from a strong crystal morphology, and overall prismatic form, zircon is especially important as an abrasive mineral in glacial systems. Its chemically inert nature, its dominancc in terms of hardness over light minerals, and its abundance amongst other hard minerals makes it unique and important as a microstriator. Transported in a highly viscous glacial medium, it is capable of damaging other softer grains with aggressive crushing, chipping, striating, abrading and polishing processes. These occur in both coarse-grained gravelly sand and in fine-grained clayey silt matrices at the base of the icc. Zircon grains tend to serve many functions, initially as inclusion tools in larger feldspar grains and as 'studs' in quartzite grains. Wearing first on points, and later, following liberation, they assume a shape by honing, faceting and fracturing as tools and as grit that allows them to act as microstriators, inflicting damage on other particles in the basal ice. With a hardness of 7.5, lacking significant cleavage, and exhibiting strong crystal form. the finer-grained zircons appear to abrade and striate quartz (hardness 7.0). feldspars (hardness 6.0). garnets (hardness 6.5–7.5), and gold (hardness 2.5-3.0). A detailed study of Bolivian tills shows the dominant form of the zircon striator to be an elongate, pencil shape (euhedral polygonal prism with sharp, pyramidal terminations) that shows various degrees of abrasion, and ranges from wide grains with dull edges to narrow grains with sharp edges (typical pencil form).  相似文献   
27.
The tidewater glacier complex of Kongsvegen/Kronebreen, at the head of Kongsfjorden in north-west Spitsbergen, has advanced rapidly several times since its Neoglacial maximum. Two such advances, 1869 and 1948, are well constrained in time and space and are widely interpreted as glacier surges. During the 1869 advance an ice-dammed lake formed on the western side of Ossian Sarsfjellet. This ice-dammed lake is associated with a thrust moraine complex. Four lake levels are identified, two of which are associated with rock-cut shorelines implying a degree of lake stability. The history of this lake, the nature of the ice dam and its relationship to the thrust moraine complex are discussed. The lake history spanning 28 to 35 years is used to assess the ice-marginal dynamics of the Kongsvegen/Kronebreen glacier. It is concluded that, contrary to previous suggestions, the rapid advance of this tidewater glacier may simply be an example of a non-climatic ice-marginal fluctuation, of the type common to tidewater glacier, as opposed to a glacier surge. A second ice-dammed lake, to the east of Ossian Sarsfjellet, formed sometime after 1869 as the ice retreated, and still exists today. This largely supraglacial lake is associated with a very different geomorphological assemblage, which has a poor long-term preservation potential. The geomorphological characteristics of the two lakes on Ossian Sarsfjellet are compared and used to discuss the problems associated with the recognition of ice-dammed lakes within the Pleistocene record. On the basis of the evidence presented here, ice-dammed lakes may be more common during deglaciation than currently suggested.  相似文献   
28.
29.
30.
Southwest Japan is divided into Outer and Inner Zones by the Median Tectonic Line (MTL), a major transcurrent fault. The Outer Zone is composed of the Sambagawa (high-pressure intermediate or high P/T type metamorphism), Chichibu and Shimanto Belts. In the Inner Zone, the Ryoke Belt (andalusite– sillimanite or low P/T type metamorphism) was developed mainly within a Jurassic accretionary complex. This spatial relationship between high P/T type and low P/T type metamorphic belts led Miyashiro to the idea that metamorphic belts were developed as ‘paired’ systems. Textural relationships and petrogenetically significant mineral assemblages in pelites from the Ryoke Belt imply peak PT conditions of ≈5 kbar and up to 850 °C in migmatitic garnet–cordierite rocks from the highest-grade metamorphic zone. It is likely that the thermal anomaly responsible for metamorphism of the Ryoke Belt was related to a segment of the Farallon–Izanagi Ridge as it subducted under the eastern margin of the Asian continent during the Cretaceous. The sequence of mineral assemblages developed in pelites implies a metamorphic field gradient with shallow dP/dT slope, inferred to have been generated by a nested set of hairpin-like ‘clockwise’PT paths. These PT paths are characterized by limited prograde thickening, minor decompression at peak-T , and near-isobaric cooling, features that may be typical of PT paths in low P/T type metamorphic belts caused by ridge subduction. A ridge subduction model for the Ryoke Belt implies that juxtaposition of the high-P/T metamorphic rocks of the Sambagawa Belt against it was a result of terrane amalgamation. Belt-parallel ductile stretching, recorded as syn-metamorphic, predominantly constrictional strain in both Ryoke and Sambagawa Belt rocks, and substantial sinistral displacement on the MTL are consistent with left-lateral oblique convergence. Diachroneity in fast cooling of the Ryoke Belt is implied by extant thermochronological data, and is inferred to relate to progressive SW to NE docking of the Sambagawa Belt. Thus, an alternative interpretation of ‘paired’ metamorphic belts in Japan is that they represent laterally contemporaneous terranes, rather than outboard and inboard components of a trench/arc ‘paired’ system. Amalgamation of laterally contemporaneous terranes during large translations of forearcs along continental margins may explain other examples of ‘paired’ metamorphic belts in the geological record.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号