首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98044篇
  免费   1580篇
  国内免费   999篇
测绘学   2766篇
大气科学   7065篇
地球物理   19816篇
地质学   34842篇
海洋学   8228篇
天文学   21987篇
综合类   342篇
自然地理   5577篇
  2022年   535篇
  2021年   940篇
  2020年   1027篇
  2019年   1136篇
  2018年   2567篇
  2017年   2403篇
  2016年   3072篇
  2015年   1835篇
  2014年   2990篇
  2013年   5219篇
  2012年   3134篇
  2011年   4199篇
  2010年   3513篇
  2009年   4606篇
  2008年   4191篇
  2007年   3957篇
  2006年   3781篇
  2005年   3110篇
  2004年   2955篇
  2003年   2820篇
  2002年   2626篇
  2001年   2375篇
  2000年   2277篇
  1999年   1872篇
  1998年   1952篇
  1997年   1871篇
  1996年   1593篇
  1995年   1591篇
  1994年   1366篇
  1993年   1256篇
  1992年   1182篇
  1991年   1112篇
  1990年   1187篇
  1989年   1067篇
  1988年   966篇
  1987年   1195篇
  1986年   998篇
  1985年   1243篇
  1984年   1361篇
  1983年   1274篇
  1982年   1245篇
  1981年   1041篇
  1980年   1004篇
  1979年   904篇
  1978年   892篇
  1977年   822篇
  1976年   781篇
  1975年   734篇
  1974年   759篇
  1973年   757篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
551.
Specific criteria used in the compilation of large-scale maps of erosion-prone areas are defined and evaluated for tracts of land representing a number of different agricultural cover types. Formulas are derived which facilitate the mapping of such areas based on such readily observable morphometric characteristics as slope length and steepness. Translated by Edward Torrey, Alexandria, VA 22308 from: Vestnik Moskovskogo Universiteta, geografiya, 1988, No. 5, pp. 25-31.  相似文献   
552.
Results are presented of analysis of Landsat MSS imagery for the purpose of assessing damage to northern taiga and tundra vegetation caused by emissions generated by nonferrous metallurgy on northwest Russia's Kola Peninsula. Unlike earlier studies, the present project attempts to provide spatially comprehensive coverage of vegetation impacts, according to a standardized methodology for their assessment. A reduction in the number of feature classes identifiable upon a change from visual interpretation to automated classification based on spectral brightness values made it necessary to test alternative classification procedures (based on brightness ratios and the normalized vegetation index).  相似文献   
553.
Two specialists on the forest and wetland ecosystems of Siberia describe principles and measures employed in the establishment of a regular program of ecological mapping at Russia's Central Siberian Biosphere Preserve, as well as efforts to standardize remote-sensing-based monitoring efforts through improved procedures for selection of reference plots for ground truth determination. Issues addressed include the identification of principal ecological factors serving as landscape classification criteria, the need for better methods of interpreting an entire range of forest-wetland communities on remote sensing imagery, innovations in data gathering procedures in the field, selection of natural models [representative tracts] for monitoring in view of the technical infeasibility of monitoring the entire preserve, and selection of reference plots within each model for ground truth. Translated by Edward Torrey, Alexandria, VA 22308 from: Geografiya i prirodnyye resursy, 1996, No. 2, pp. 36-43.  相似文献   
554.
Abstract

Indo_Gangetic Plain (IGP) of India that stretched from the foothills of Himalayas near the Punjab State to the Gangetic delta in West Bengal State was known for highly fertile soil and favorable climatic condition for highest production of rice‐wheat. Appearance of soil salinity in large areas of IGP caused a major concern due to loss of productivity. The salt affected soils maps of India (NRSA 1997) showed vast areas of salt affected soils distributed along the Gangetic Plain covering the States of Haryana, Punjab, Uttar Pradesh, Bihar and West Bengal. In the analogue form, these maps contain voluminous data were difficult to handle without messing the whole dataset. An attempt was made to prepare a digitized database of salt affected soils to facilitate easy access, retrieval and map calculations required for reclamation and management of salt affected soil. The salt affected soils maps on 1:250, 000 scale were digitized for the States of Punjab, Haryana, Uttar Pradesh, Bihar and West Bengal using ILWIS. GIS. The Survey of India topomap was used for geo‐referencing and basemap preparation overlaying thematic layers for administrative and political boundaries, infrastructure, irrigation and drainage and settlements. The attribute data on physiography and the soil characteristics were stored in an attribute table and linked with the digitized polygons to prepare a relational database. Combining geo‐referenced (State) maps of Haryana, Punjab, Uttar Pradesh, Bihar and West Bengal using GIS, a composite map for Indo‐Gangetic plain was prepared. Four Agroclimatic regions (ACRs) and seventeen Agroclimatic zones (ACZs) were identified in the Indo‐Gangetic Plain (The Planning Commission of India) for planning and development of natural resources at regional level. The boundaries of ACZs and ACRs were delineated from the primary (master) database of IGP using ILWIS.GIS. The distribution of SAS polygons at regional and zonal level was delineated superimposing digitized boundaries of ACRs and ACZs over the master database of IGP. The state‐wise, region‐wise and zone‐wise extent of SAS was calculated. Soils were essentially saline at Lower‐ and Middle Gangetic Plain regions but highly variable and complex saline‐sodic in the Upper‐ and Trans‐Gangetic Plain regions. The area statistics showed that maximum SAS area occurred in ACR V (Upper Gangetic Plain) in Uttar Pradesh (UP) followed by ACR IV (Middle Gangetic Plain) in UP and Bihar, ACR III (Lower Gangetic Plain) in West Bengal and ACR VI (Trans‐Gangetic Plain) of Haryana and Punjab. Such database in digital format provides geo‐referenced, easy to access and retrievable, relational database comprising of thematic and attribute information of salt affected soils at state, regional and zonal level to facilitate overlay and map calculation of related data such as water quality, climatic, landform etc, useful for planning and decision making in reclamation and management of salt affected soils in IGP and other similar regions.  相似文献   
555.
Alfios is the biggest river of the Peloponnese and the ninth longest river in Greece. It drains an area of almost 2575 km2 in Western Peloponnese and discharges at Kiparissiakos Gulf. Due to its extent, the Alfios basin presents complex physiography and geomorphology.

During the last 50 years, major direct human activities have had an important impact on the river network shape and on the valley floor morphology. The most important human activities were the channel straightening caused by meander cut-offs in 1950, the construction of two dams: the Ladonas dam in 1955 and the Flokas dam in 1968 and the illegal in-stream gravel extraction that started in the 1960s and continues until today. As a result, the Alfios riverbed has presented very rapid vertical and horizontal (lateral) erosion and significant changes to its network shape. The drainage network follows a straighter course, the number of meanders has been reduced and the seventh order branch is deeply incised. Besides the morphological impacts to the river network shape there are also serious economic damages caused by human activity. During the winter of 1999, the Flokas dam bridge was closed for a long period due to damages at its foundation caused by the heavy rain and illegal gravel extraction. Transportation between the villages in the area became extremely difficult and time consuming and the cost of the repairs was estimated at 500 000 euros. In this study, there is an effort to map the network shape transformation for the period 1977–2000 using multitemporal and multisensor satellite images. One Landsat MSS image, three Landsat TM images, two Landsat ETM images, and one Terra ASTER image have been orthorectified and processed in order to cover the specific period. Principal Component Analysis (PCA) method and Geographical Information System (GIS) techniques have been applied to map the changes in the Alfios River channel. The drainage network straightening and the cut-off of five big meanders were detected and mapped. These changes occurred between 1986 and 2000.  相似文献   
556.
Salt affected soils occupy significant areas in western and central India manifested by the arid and semiarid climate, sandy/clayey soil texture, absence of natural drainage, and inadequate infrastructure and irrigation development. These soils are productive following reclamation and appropriate management. The National Remote Sensing Agency, Hyderabad (India) published state-wise maps of salt affected soils in India on 1:250,000 scale using a legend that includes physiography, soil characteristics, and the aerial extent of the mapping units. In the analogue form, voluminous data contained in such maps were difficult to handle by users of varied backgrounds. An attempt was made to prepare a computerized database of salt affected soils for easy access, retrieval, and manipulation of spatial and attribute data useful for management of salt affected soils. The salt affected soils maps were prepared, for Rajasthan, Gujarat, Madhya Pradesh, and Maharashtra states, overlaying digitized layers of SAS polygons and the Survey of India basemap using the ILWIS (Integrated Land and Water Information System) software. GIS was used to prepare a composite (master) database of western and central India that showed the extent and distribution of salt affected soils. A relational database was prepared combining the digitized polygons with soil characteristics such as nature and degree of salinity (presence of higher concentration of neutral salts and neutral soil reaction), sodicity (presence of higher concentration of basic salts and alkaline reaction) and ground coverage. The regional and zonal databases of salt affected soils were prepared at a suitable scale overlaying agro-climatic regions agro-climatic zones. Spatial relation of salt affected soils with physiography, climate, geology, and agro-eco-sub-regions were evaluated employing map calculations in GIS. Saline soils were prevalent in Gujarat, and Rajasthan while sodic soils were dominant in Maharashtra and Madhya Pradesh. These were distributed primarily in the arid (B) plain of Rajasthan, alluvial (A) and coastal (D) plains of Gujarat, and peninsular plain (F) of Maharashtra and Madhya Pradesh. It occupied 2,596,942 ha (78%) in the western (Rajasthan and Gujarat) and 733,608 ha (22%) in the central (Madhya Pradesh and Maharashtra) regions. The SAS occupied 3.3 million ha in the western and central region constituting 50% of the total salt affected soils in India. The saline and sodic soils occupied 2,069,285 ha (62%) and 1,261,266 ha (38%), respectively.  相似文献   
557.
Remote classification of land-use/land-cover (LULC) types in Brazil's Cerrado ecoregion is necessary because knowledge of Cerrado LULC is incomplete, sources of inaccuracy are unknown, and high-resolution data are required for the validation of moderate-resolution LULC maps. The aim of this research is to discriminate between Cerrado and agriculture using high-resolution Landsat 7 ETM+ imagery for the western region of Bahia state in northeastern Brazil. The Maximum Likelihood Classification (MLC) and Spectral Angle Mapper (SAM) algorithms were applied to a ~3000 km2 subset, yielding comparable classification accuracies. The panchromatic band was reserved for validation. User's and producer's accuracies were highest for non-irrigated agriculture (~94%) but lower for Cerrado Lato Sensu (89%). Classification errors likely resulted from spatial and spectral characteristics of particular classes (e.g. riparian forest and burned) and overestimation of other classes (e.g. Eucalyptus and water). Manual misinterpretation of validation data may have also led to lower reported classification accuracies.  相似文献   
558.
559.
A lumped empirical model, the Geomorphologic Instantaneous Unit Hydrograph (GIUH) rainfall-runoff model, is developed for the Can Le catchment in the upstream region of the Sai Gon river Basin (Vietnam). This model can serve to simulate catchment runoff into the Dau Tieng Reservoir and can be used as a flood forecasting tool for the ungauged Can Le catchment. The GIUH couples geomorphology and hydrology quantitatively. The obtained Unit Hydrograph is based on Horton's morphometric parameters; bifurcation, length and area ratios. A new functionality within the ILWIS GIS-RS package, namely ‘DEM-hydro processing’, is applied to effectively process a Digital Elevation Model to extract these ratios from the drainage network. To supplement the limited field data available, various satellites images have been used such as ASTER, SRTM (Shuttle Radar Topography Mission) and METEOSAT 5. A short field campaign to collect missing ground data was executed between September and October 2005. The data collected included discharge (and stage – discharge curve), meteorological data, soil, land use information that are used for paramerisation, calibration and validation of the GIUH. The model was successfully applied for the Can Le catchment. Using the Horton's morphometric parameters derived from the DEM with estimated overland and stream flow velocities, the model is easy-to-use.  相似文献   
560.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号