This paper investigates the peak response of a 2-DOF uncoupled linear oscillator under arbitrarily oriented two-component horizontal earthquake motion. Input data consist of 22 two-component acceleration records from the magnitude 6.6, October 15, 1979 Imperial Valley earthquake. One-directional response spectra for each principal direction of the oscillator, and two-directional response spectra (amplitude of the peak resultant response and its direction with respect to principal directions) are calculated by considering all angles of incidence of the excitation. The results indicate that, for oscillators that are not too flexible (i.e. with natural frequencies greater than 0.8 Hz), the two-directional peak response is controlled by the weaker direction of the oscillator. For flexible oscillators the two-directional peak response is controlled by the direction whose natural frequency is closer to dominant ground motion frequencies. The results also show that when the two-directional peak response is expressed as a weighted sum of one-directional peak responses, the weighting factors are not constants, but functions of oscillator and dominant ground motion frequencies. 相似文献
A new mineral aklimaite, Ca4[Si2O5(OH)2](OH)4 · 5H2O, has been found near Mount Lakargi, Upper Chegem caldera, Kabardino-Balkaria, the Northern Caucasus, Russia, in the skarnified limestone xenolith in ignimbrite. This hydrothermal mineral occurs in a cavity of altered larnite skarn and is associated with larnite, calcium humite-group members, hydrogarnets, bultfonteinite, afwillite, and ettringite. Aklimaite forms transparent, colorless (or occasionally with pinkish tint) columnar or lath-shaped crystals up 3 × 0.1 × 0.01 mm in size, flattened on {001} and elongated along {010}; they are combined in spherulites. The luster is vitreous; the cleavage parallel to the {001} is perfect. Dcalc = 2.274 g/cm3. The Mohs’ hardness is 3–4. Aklimaite is optically biaxial, negative, 2Vmeas > 70°, 2Vcalc = 78°, α = 1.548(2), β = 1.551(3), γ = 1.553(2). The IR and Raman spectra are given. The chemical composition (wt %, electron microprobe) is as follows: 0.06 Na2O, 0.02 K2O, 45.39 CaO, 0.01 MnO, 0.02 FeO, 24.23 SiO2, 0.04 SO3, 3.22 F, 27.40 H2O(calc.), ?1.36 -O=F2; the total is 99.03. The empirical formula calculated on the basis of 2Si apfu with O + OH + F = 16 is as follows: (Ca4.02Na0.01)Σ4.03[Si2.00O5.07(OH)1.93][(OH)3.16F0.84] Σ4.00 · 5H2O. The mineral is monoclinic, space group C2/m, a = 16.907(5), b = 3.6528(8), c = 13.068(4) Å, β = 117.25(4)·, V= 717.5(4) Å3, Z = 2. Aklimaite is representative of the new structural type, the sorosilicate with disilicate groups [Si2O5(OH)2]. The strongest reflections in the X-ray powder patterns [d, Å (hkl)] are: 11.64(100)(001), 2.948(32)(310, 203), 3.073(20) ($\bar 404$, $\bar 311$), 2.320(12)(005, 510), 2.901 (11)(004), 8.30(10)$\left( {\bar 201} \right)$. The type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow. 相似文献
New laboratory and field data are presented on fluid advection into the swash zone. The data illustrate the region of the inner surf zone from which sediment can be directly advected into the swash zone during a single uprush, which is termed the advection length. Experiments were conducted by particle tracking in a Lagrangian reference frame, and were performed for monochromatic breaking waves, solitary bores, non-breaking solitary waves and field conditions. The advection length is normalised by the run-up length to give an advection ratio, A, and different advection ratios are identified on the basis of the experimental data. The data show that fluid enters the swash zone from a region of the inner surf zone that can extend a distance seaward of the bore collapse location that is approximately equal to half of the run-up length. This region is about eight times wider than the region predicted by the classical swash solution of Shen and Meyer [Shen, M.C., Meyer, R.E., 1963. Climb of a bore on a beach. Part 3. Runup. Journal of Fluid Mechanics 16, 113–125], as illustrated by Pritchard and Hogg [Pritchard, D., Hogg, A.J., 2005. On the transport of suspended sediment by a swash event on a plane beach. Coastal Engineering 52, 1–23]. Measured advection ratios for periodic waves show no significant trend with Iribarren number, consistent with self-similarity in typical swash flows. The data are compared to recent characteristic solutions of the non-linear shallow water wave (NLSW) equations and both finite difference and finite volume solutions of the NLSW equations. 相似文献
The maximal R ratios of the winter-to-summer NmF2 values of each ionosonde are calculated for a specified UT under daytime quiet geomagnetic conditions and at approximately equal levels of solar activity, based on foF2 measurement data of 98 ionosondes at mid- and low geomagnetic latitudes of the Northern and Southern hemispheres for 1957–2009. The P(R > 1) conditional probability of NmF2 winter anomaly observations, as well as the most probable RMP and average <R> of R values are calculated for low, moderate, and high solar activity on the base of foF2 measurements during the periods December 22 ± 30 days and June 21 ± 30 days. Variations in P(R > 1), RMP, and 〈R〉 with latitude and solar activity are analyzed. 相似文献
The paper of Reid and Whitaker (1976) on the effects of a vegetation canopy on flow of water is re-examined. Their assumptions on the equality of various drag coefficients are replaced by more realistic calculations. A new method for calculating wind stress on water is presented for the case when the vegetation extends above the water surface.For the case of vanishingly small water depth, it is shown that the horizontal stress is approximately constant in the vertical. This results in a diagnostic relationship for the water current as a function of the wind stress and bottom roughness.A new expression for the vertically averaged frictional force per unit mass is derived on the assumption that the friction velocity varies linearly with height. The vertical rate of change of friction velocity depends on the mean water current, the wind stress, the bottom roughness, and the water depth. This work has a possible application in the mitigation of storm surges. 相似文献
In East Africa, the feedback between tectonic uplift, erosional denudation and associated possible climate changes is being studied by a multidisciplinary research group, ‘Riftlink’. The group's focus is the Albertine Rift, the northern part of the western branch of the East African Rift System, and in particular the rising Rwenzori Mountains that stretch along the border of the D.R. Congo and Uganda. Major questions relate to the timing of the formation of the Rwenzori Mountains, and whether the height of these mountains (> 5000 m) relates to rift movements in Neogene times, or represents an old basement block that formed a topographic high long before. Though, at first, research concentrated on the eastern (Ugandan) part of the Albertine Rift and Rwenzori Mountains, it has now moved further to the west to the D.R. Congo. A first field‐campaign, covering the area from northern Lake Edward along the rift shoulder up to the Blue Mountains at Lake Albert, was conducted in summer 2009, in cooperation with the Ruwenzori State University of Butembo. Here, we present a brief overview of the field‐campaign, with impressions gathered on the morphology and geology of the study area. 相似文献
Jordan suffers from water scarcity and groundwater covers the majority of Jordan’s water supply. Therefore, there is an urgent need to manage this resource conscientiously. A regional numerical groundwater flow model, developed as part of a decision support system for the country of Jordan, allows for quantification of the overexploitation of groundwater resources and enables determination of the extent of unrecorded agricultural groundwater abstraction. Groundwater in Jordan is abstracted from three main aquifers partly separated by aquitards. With updated geological, structural, and hydrogeological data available in the country, a regional numerical groundwater flow model for the whole of Jordan and the southernmost part of Syria was developed using MODFLOW. It was first calibrated for a steady-state condition using data from the 1960s, when groundwater abstraction was negligible. After transient calibration using groundwater level measurements from all aquifers, model results reproduce the large groundwater-level declines experienced in the last decades, which have led to the drying out of numerous springs. They show a reversal of groundwater flow directions in some regions, due to over-abstraction, and demonstrate that documented abstractions are not sufficient to cause the observed groundwater-level decline. Only after considering irrigation water demand derived from remote sensing data, the model is able to simulate these declines. Illegal abstractions can be quantified and predictive scenarios show the potential impact of different management strategies on future groundwater resources.
The present paper provides a case study of the assessment of the potential for CO2 storage in the deep saline aquifers of the Bécancour region in southern Québec. This assessment was based on a hydrogeological and petrophysical characterization using existing and newly acquired core and well log data from hydrocarbon exploration wells. Analyses of data obtained from different sources provide a good understanding of the reservoir hydrogeology and petrophysics. Profiles of formation pressure, temperature, density, viscosity, porosity, permeability, and net pay were established for Lower Paleozoic sedimentary aquifers. Lateral hydraulic continuity is dominant at the regional scale, whereas vertical discontinuities are apparent for most physical and chemical properties. The Covey Hill sandstone appears as the most suitable saline aquifer for CO2 injection/storage. This unit is found at a depth of more than 1 km and has the following properties: fluid pressures exceed 14 MPa, temperature is above 35 °C, salinity is about 108,500 mg/l, matrix permeability is in the order of 3 × 10?16 m2 (0.3 mDarcy) with expected higher values of formation-scale permeability due to the presence of natural fractures, mean porosity is 6 %, net pay reaches 282 m, available pore volume per surface area is 17 m3/m2, rock compressibility is 2 × 10?9 Pa?1 and capillary displacement pressure of brine by CO2 is about 0.4 MPa. While the containment for CO2 storage in the Bécancour saline aquifers can be ensured by appropriate reservoir characteristics, the injectivity of CO2 and the storage capacity could be limiting factors due to the overall low permeability of aquifers. This characterization offers a solid basis for the subsequent development of a numerical hydrogeological model, which will be used for CO2 injection capacity estimation, CO2 injection scenarios and risk assessment. 相似文献
The seasonal variation in phytoplankton activity is determined by analysing 1385 primary production (PP) profiles, chlorophyll a (Chl) concentration profiles and phytoplankton carbon biomass concentrations (C) from the period 1998–2012. The data was collected at six different stations in the Baltic Sea transition zone (BSTZ) which is a location with strong seasonal production patterns with light as the key parameter controlling this productivity. We show that the use of Chl as a proxy for phytoplankton activity strongly overestimates the contribution from the spring production to annual pelagic carbon flow. Spring (February and March) Chl comprised 16–30% of the total annual Chl produced, whereas spring C was much lower (8–23%) compared to the annual C. Spring PP accounted for 10–18% of the total annual PP, while the July–August production contributed 26–33%, i.e. within the time frame when zooplankton biomass and grazing pressure are highest. That is, Chl failed in this study to reflect the importance of the high summer PP. A better proxy for biomass may be C, which correlated well with the seasonal pattern of PP (Pearson correlation, p < 0.05). Thus, this study suggests to account for the strong seasonal pattern in C/Chl ratios when considering carbon flow in coastal systems. Seasonal data for PP were fitted to a simple sinusoidal wave model describing the seasonal distribution of PP in the BSTZ and were proposed to present a better parameterizaton of PP in shallow stratified temperate regions than more commonly applied proxies. 相似文献
The work is devoted to the numerical simulation of the dynamo electric field and its effects in the Earth’s ionosphere within the scope of the thermosphere-ionosphere-protonosphere global self-consistent model developed at WD IZMIRAN. The new electric field calculation block, which was used to obtain results of the self-consistent calculations of the electric field potential generated by the dynamo effect of the thermospheric winds (the dynamo field) and the equatorial electrojet for March 22, 1987, is briefly described in this work. A comparison of the obtained results with the experimental data showed a satisfactory agreement. Moreover, the proposed model was used to calculate the diurnal variations in the ionospheric parameters for Jicamarca equatorial station under the same conditions with the help of the new block of the electric field. The results of these calculations are also presented and discussed in this work. It has been indicated that the new model satisfactorily describes the specific features of electric field distribution at the geomagnetic equator and the well-known phenomenon of equatorial electrojet. 相似文献