首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   12篇
  国内免费   1篇
测绘学   17篇
大气科学   29篇
地球物理   47篇
地质学   77篇
海洋学   9篇
天文学   62篇
自然地理   8篇
  2024年   2篇
  2023年   2篇
  2021年   4篇
  2020年   4篇
  2019年   9篇
  2018年   10篇
  2017年   10篇
  2016年   14篇
  2015年   3篇
  2014年   8篇
  2013年   9篇
  2012年   12篇
  2011年   15篇
  2010年   8篇
  2009年   14篇
  2008年   17篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2004年   11篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1988年   2篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   5篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1965年   1篇
  1960年   1篇
  1956年   2篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
191.
192.
Obtaining reliable measurements of plasma parameters in the Sun’s corona remains an important challenge for solar physics. We previously presented a method for producing maps of electron temperature and speed of the solar corona using K-corona brightness measurements made through four color filters in visible light, which were tested for their accuracies using models of a structured, yet steady corona. In this article we test the same technique using a coronal model of the Bastille Day (14 July 2000) coronal mass ejection, which also contains quiet areas and streamers. We use the coronal electron density, temperature, and flow speed contained in the model to determine two K-coronal brightness ratios at (410.3, 390.0 nm) and (423.3, 398.7 nm) along more than 4000 lines of sight. Now assuming that for real observations, the only information we have for each line of sight are these two K-coronal brightness ratios, we use a spherically symmetric model of the corona that contains no structures to interpret these two ratios for electron temperature and speed. We then compare the interpreted (or measured) values for each line of sight with the true values from the model at the plane of the sky for that same line of sight to determine the magnitude of the errors. We show that the measured values closely match the true values in quiet areas. However, in locations of coronal structures, the measured values are predictably underestimated or overestimated compared to the true values, but can nevertheless be used to determine the positions of the structures with respect to the plane of the sky, in front or behind. Based on our results, we propose that future white-light coronagraphs be equipped to image the corona using four color filters in order to routinely create coronal maps of electron density, temperature, and flow speed.  相似文献   
193.
Shatter cones are diagnostic for the recognition of meteorite impact craters. They are unambiguously identifiable in the field and the only macroscopic shock deformation feature. However, the physical boundary conditions and exact formation mechanism(s) are still a subject of debate. Melt films found on shatter cone surfaces may allow the constraint of pressure–temperature conditions during or immediately after their formation. Within the framework of the MEMIN research group, we recovered 24 shatter cone fragments from the ejecta of hypervelocity impact experiments. Here, we focus on silicate melt films (now quenched to glass) found on shatter cone surfaces formed in experiments with 20–80 cm sized sandstone targets, impacted by aluminum and iron meteorite projectiles of 5 and 12 mm diameter at velocities of 7.0 and 4.6 km s−1, respectively. The recovered shatter cone fragments vary in size from 1.2 to 9.3 mm. They show slightly curved, striated surfaces, and conical geometries with apical angles of 36°–52°. The fragments were recovered from experiments with peak pressures ranging from 46 to 86 GPa, and emanated from a zone within 0.38 crater radii. Based on iSale modeling and petrographic investigations, the shatter coned material experienced low bulk shock pressures of 0.5–5 GPa, whereas deformation shows a steep increase toward the shatter cone surface leading to localized melting of the rock, resulting in both vesicular as well as polished melt textures visible under the SEM. Subjacent to the melt films are zones of fragmentation and brittle shear, indicating movement away from the shatter cone apex of the rock that surrounds the cone. Smearing and extension of the melt film indicates subsequent movement in opposite direction to the comminuted and brecciated shear zone. We believe the documented shear textures and the adjacent smooth melt films can be related to frictional melting, whereas the overlying highly vesiculated melt layer could indicate rapid pressure release. From the observation of melting and mixing of quartz, phyllosilicates, and rutile in this overlying texture, we infer high, but very localized postshock temperatures exceeding 2000 °C. The melted upper part of the shatter cone surface cross-cuts the fragmented lower section, and is accompanied by PDFs developed in quartz parallel to the {112} plane. Based on the overprinting textures and documented shock effects, we hypothesize shatter cones start to form during shock loading and remain an active fracture surface until pressure release during unloading and infer that shatter cone surfaces are mixed mode I/II fracture surfaces.  相似文献   
194.
This work examines the characteristics of the urban heat island (UHI) in a medium-sized city in northern Spain (Bilbao) using 5-year climate data (2005–2009) and the results of three specific measurement campaigns (2009–2010). Urban climate variables are not only compared with those in rural sites but also local climatic differences occurring inside the city are analysed. The findings presented in this paper show the influence of complex topography and sea/land breeze in the urban climate. Spatial characteristics and temporal evolution of UHI is presented. Hourly maximum temperature anomaly (ΔT u–r, max) occurs just after sunrise and an urban cold island (UCI) is developed after midday. Along the year, mean UHI intensity is highest in autumn and the UCI effect increases in spring and summer in relation with sea breeze cooling potential. Diurnal and seasonal variation of air flow patterns appear to influence significantly on UHI intensity.  相似文献   
195.
196.

Background  

This study evaluates the carbon dioxide and other greenhouse gas fluxes to the atmosphere resulting from charcoal production in Zambia. It combines new biomass and flux data from a study, that was conducted in a miombo woodland within the Kataba Forest Reserve in the Western Province of Zambia, with data from other studies.  相似文献   
197.
Varga  Ákos János  Breuer  Hajnalka 《Climate Dynamics》2020,55(9-10):2849-2866

In this study, the Weather Research and Forecasting (WRF) model is used to produce short-term regional climate simulations with several configurations for the Carpathian Basin region. The goal is to evaluate the performance of the model and analyze its sensitivity to different physical and dynamical settings, and input data. Fifteen experiments were conducted with WRF at 10 km resolution for the year 2013. The simulations differ in terms of configuration options such as the parameterization schemes, the hydrostatic and non-hydrostatic dynamical cores, the initial and boundary conditions (ERA5 and ERA-Interim reanalyses), the number of vertical levels, and the length of the spin-up period. E-OBS dataset 2 m temperature, total precipitation, and global radiation are used for validation. Temperature underestimation reaches 4–7 °C for some experiments and can be reduced by certain physics scheme combinations. The cold bias in winter and spring is mainly caused by excessive snowfall and too persistent snow cover, as revealed by comparison with satellite-based observations and a test simulation without snow on the surface. Annual precipitation is overestimated by 0.6–3.8 mm day−1, with biases mainly accumulating in the period driven by large-scale weather processes. Downward shortwave radiation is underestimated all year except in the months dominated by locally forced phenomena (May to August) when a positive bias prevails. The incorporation of downward shortwave radiation to the validation variables increased the understanding of underlying problems with the parameterization schemes and highlighted false model error compensations.

  相似文献   
198.
Lattice dynamical calculations of the pyrite FeS2 were performed using the polarizable-ion model (PIM) with different sets of short-range force constants. Not until the mean deviations between the observed and the calculated phonon energies become smaller than 3 cm-1, the true force field can be established. In the case of only slightly greater deviations, the force fields computed differ strongly being without any physical meaning. The results are discussed with respect to the force constants K i , F i , and H i , the effective dynamic charges and polarizabilities of the atoms involved, and the eigenvectors and potential energy distributions of the phonon modes. The most important short-range force constants are K 1 (Fe-S stretching): 0.5 N cm-1, K 2 (internal stretching of the S2 units): 1.0 N cm-1, F 1 (Fe....Fe stretching): 0.2 N cm-1, which indicate repulsive interactions of Fe atoms due to the occupied t 2g orbitals despite the relatively large Fe?Fe distances of 383 pm, and F 2 and F 3 (both intermolecular S2?S2 interactions): 0.2 N cm-1. The great TO/LO splittings of some of the IR allowed phonon modes (species F u) are caused by the large polarizabilities (2.4.106 and 3.3.106 pm3) of the atoms involved rather than by their effective charges (Fe: 0.2 e).  相似文献   
199.
200.
The automatic interpretation of 3D point clouds for building reconstruction is a challenging task. The interpretation process requires highly structured models representing semantics. Formal grammars can describe structures as well as the parameters of buildings and their parts. We propose a novel approach for the automatic learning of weighted attributed context‐free grammar rules for 3D building reconstruction, supporting the laborious manual design of rules. We separate structure from parameter learning. Specific Support Vector Machines (SVMs) are used to generate a weighted context‐free grammar and predict structured outputs such as parse trees. The grammar is extended by parameters and constraints, which are learned based on a statistical relational learning method using Markov Logic Networks (MLNs). MLNs enforce the topological and geometric constraints. MLNs address uncertainty explicitly and provide probabilistic inference. They are able to deal with partial observations caused by occlusions. Uncertain projective geometry is used to deal with the uncertainty of the observations. Learning is based on a large building database covering different building styles and façade structures. In particular, a treebank that has been derived from the database is employed for structure learning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号