首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   12篇
  国内免费   1篇
测绘学   17篇
大气科学   29篇
地球物理   47篇
地质学   77篇
海洋学   9篇
天文学   62篇
自然地理   8篇
  2024年   2篇
  2023年   2篇
  2021年   4篇
  2020年   4篇
  2019年   9篇
  2018年   10篇
  2017年   10篇
  2016年   14篇
  2015年   3篇
  2014年   8篇
  2013年   9篇
  2012年   12篇
  2011年   15篇
  2010年   8篇
  2009年   14篇
  2008年   17篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2004年   11篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1988年   2篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   5篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1965年   1篇
  1960年   1篇
  1956年   2篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
131.
The far-infrared (FIR) spectra of pyrites, marcasites and loellingites, and arsenopyrites of the type MX 2, MY 2, and MXY with M=Fe, Co, Ru, Rh, Os, Ir X=S, Se, Te, and Y=P, As, and Sb have been studied, including group theoretical treatment of the phonon modes. The internal Y - Y and X - Y stretching modes, infrared (IR) allowed only in the case of the arsenopyrites, have been found to be in the range 440–490, 470–510, 450–490, 430–450 and 400–420 cm?1 for MP 2, MPS, MPSe, MAsS, and MSbS type compounds, respectively. From the obtained spectra intensity weighted mean phonon frequencies, i.e. central frequencies as defined by Plendl (1961), and mass weighted ones have been calculated and interpreted in terms of the strength of the MX and MY bonds, especially comparing 3d, 4d, and 5d transition metal compounds. Method of preparation and X-ray data of the chalcides and pnictides studied are also given.  相似文献   
132.
Accurate reconstruction of roofs with dormers is challenging. Without careful separation of the dormer points from the points on the roof surface, the estimation of the roof areas is distorted. The characteristic distortion of the density distribution in comparison to the expected normal distribution is the starting point of our method. We propose a hierarchical method which improves roof reconstruction from LiDAR point clouds in a model‐based manner, separating dormer points from roof points using classification methods. The key idea is to exploit probability density functions to reveal roof properties and to skilfully design the features for a supervised learning method using support vector machines. The approach is tested based on real data as well as simulated point clouds.  相似文献   
133.
Petrological analysis of the Martian meteorites suggests that rheologically significant amounts of water are present in the Martian mantle. A bulk mantle water content of at least a few tens of ppm is thus expected to be present despite the potentially efficient degassing during accretion, magma ocean solidification, and subsequent volcanism. We examine the dynamical consequences of different thermochemical evolution scenarios testing whether they can lead to the formation and preservation of mantle reservoirs, and compare model predictions with available data. First, the simplest scenario of a homogenous mantle that emerges when ignoring density changes caused by the extraction of partial melt is found to be inconsistent with the isotopic evidence for distinct reservoirs provided by the analysis of the Martian meteorites. In a second scenario, reservoirs can form as a result of partial melting that induces a density change in the depleted mantle with respect to its primordial composition. However, efficient mantle mixing prevents these reservoirs from being preserved until present unless they are located in the stagnant lid. Finally, reservoirs could be formed during fractional crystallization of a magma ocean. In this case, however, the mantle would likely end up being stably stratified as a result of the global overturn expected to accompany the fractional crystallization. Depending on the assumed density contrast, little secondary crust would be produced and the lithosphere would be extremely cool and dry, in contrast to observations. In summary, it is very challenging to obtain a self‐consistent evolution scenario that satisfies all available constraints.  相似文献   
134.
135.
This paper reports on a project to compare predictions from a range of catchment models applied to a mesoscale river basin in central Germany and to assess various ensemble predictions of catchment streamflow. The models encompass a large range in inherent complexity and input requirements. In approximate order of decreasing complexity, they are DHSVM, MIKE-SHE, TOPLATS, WASIM-ETH, SWAT, PRMS, SLURP, HBV, LASCAM and IHACRES. The models are calibrated twice using different sets of input data. The two predictions from each model are then combined by simple averaging to produce a single-model ensemble. The 10 resulting single-model ensembles are combined in various ways to produce multi-model ensemble predictions. Both the single-model ensembles and the multi-model ensembles are shown to give predictions that are generally superior to those of their respective constituent models, both during a 7-year calibration period and a 9-year validation period. This occurs despite a considerable disparity in performance of the individual models. Even the weakest of models is shown to contribute useful information to the ensembles they are part of. The best model combination methods are a trimmed mean (constructed using the central four or six predictions each day) and a weighted mean ensemble (with weights calculated from calibration performance) that places relatively large weights on the better performing models. Conditional ensembles, in which separate model weights are used in different system states (e.g. summer and winter, high and low flows) generally yield little improvement over the weighted mean ensemble. However a conditional ensemble that discriminates between rising and receding flows shows moderate improvement. An analysis of ensemble predictions shows that the best ensembles are not necessarily those containing the best individual models. Conversely, it appears that some models that predict well individually do not necessarily combine well with other models in multi-model ensembles. The reasons behind these observations may relate to the effects of the weighting schemes, non-stationarity of the climate series and possible cross-correlations between models.  相似文献   
136.
The main freshwater source of arid/semi-arid Central Asia is stored in its high mountain glaciers. Water for the downstream countries is mainly supplied through the Syrdarya River that originates at the confluence of the Naryn and Karadarya rivers in the Ferghana Valley. Runoff generation from glaciers plays a crucial role, although a considerable number of small tributaries supply the river with additional runoff from snowmelt and rain in the mountains surrounding the Ferghana Valley. Observations of rising air temperature and accelerated glacier shrinkage make it most likely that the relative contributions of the smaller tributaries will increase. Hitherto, assessments of climate change effects on the water resource availability have largely neglected the growing importance of the runoff from smaller tributaries. We used a dynamically downscaled A1B SRES scenario for climate change effects for the period 2071–2100 in relation to the reference period of 1971–2000 and a version of the conceptual hydrological Hydrologiska Byråns Vattenavdelning model (HBV-light) to estimate runoff contributions with particular respect to the small tributaries. The simulations showed a 12–42% decrease in summer runoff; and a 44–107% increase in winter-spring runoff. This indicates the hydrological regime is shifting towards a runoff from snowmelt earlier in the year. The study suggests that actions for climate change adaptation should be complemented by land management configured to secure optimal runoff supplement from the smaller catchments.  相似文献   
137.
Oil and gas exploration gradually changes to the deep and complex areas. The quality of seismic data restricts the effective application of conventional time-frequency analysis technology, especially in the case of low signal-to-noise ratio. To address this problem, we propose a curvelet-based time-frequency analysis method, which is suitable for seismic data, and takes into account the lateral variation of seismic data. We first construct a kind of curvelet adapted to seismic data. By adjusting the rotation mode of the curvelet in the form of time skewing, the scale parameter can be directly related to the frequency of the seismic data. Therefore, the curvelet coefficients at different scales can reflect the time-frequency information of the seismic data. Then, the curvelet coefficients, which represent the dominant azimuthal pattern, are converted to the time-frequency domain. Since the curvelet transform is a kind of sparse representation for the signal, the screening process of the dominant coefficient masks most of the random noise, which enables the method to adapt for the low signal-to-noise ratio data. Results of synthetic and field data experiments using the proposed method demonstrate that it is a good approach to identify weak signals from strong noise in the time-frequency domain.  相似文献   
138.

We study the predictive capabilities of magnetic-feature properties (MF) generated by the Solar Monitor Active Region Tracker (SMART: Higgins et al. in Adv. Space Res. 47, 2105, 2011) for solar-flare forecasting from two datasets: the full dataset of SMART detections from 1996 to 2010 which has been previously studied by Ahmed et al. (Solar Phys. 283, 157, 2013) and a subset of that dataset that only includes detections that are NOAA active regions (ARs). The main contributions of this work are: we use marginal relevance as a filter feature selection method to identify the most useful SMART MF properties for separating flaring from non-flaring detections and logistic regression to derive classification rules to predict future observations. For comparison, we employ a Random Forest, Support Vector Machine, and a set of Deep Neural Network models, as well as lasso for feature selection. Using the linear model with three features we obtain significantly better results (True Skill Score: TSS = 0.84) than those reported by Ahmed et al. (Solar Phys. 283, 157, 2013) for the full dataset of SMART detections. The same model produced competitive results (TSS = 0.67) for the dataset of SMART detections that are NOAA ARs, which can be compared to a broader section of flare-forecasting literature. We show that more complex models are not required for this data.

  相似文献   
139.
Main group pallasite meteorites are samples of a single early magmatic planetesimal, dominated by metal and olivine but containing accessory chromite, sulfide, phosphide, phosphates, and rare phosphoran olivine. They represent mixtures of core and mantle materials, but the environment of formation is poorly understood, with a quiescent core–mantle boundary, violent core–mantle mixture, or surface mixture all recently suggested. Here, we review main group pallasite data sets and petrologic characteristics, and present new observations on the low‐MnO pallasite Brahin that contains abundant fragmental olivine, but also rounded and angular olivine and potential evidence of sulfide–phosphide liquid immiscibility. A reassessment of the literature shows that low‐MnO and high‐FeO subgroups preferentially host rounded olivine and low‐temperature P2O5‐rich phases such as the Mg‐phosphate farringtonite and phosphoran olivine. These phases form after metal and silicate reservoirs back‐react during decreasing temperature after initial separation, resulting in oxidation of phosphorus and chromium. Farringtonite and phosphoran olivine have not been found in the common subgroup PMG, which are mechanical mixtures of olivine, chromite with moderate Al2O3 contents, primitive solid metal, and evolved liquid metal. Lower concentrations of Mn in olivine of the low‐MnO PMG subgroup, and high concentrations of Mn in low‐Al2O3 chromites, trace the development and escape of sulfide‐rich melt in pallasites and the partially chalcophile behavior for Mn in this environment. Pallasites with rounded olivine indicate that the core–mantle boundary of their planetesimal may not be a simple interface but rather a volume in which interactions between metal, silicate, and other components occur.  相似文献   
140.
Semiempirical band structure calculations were performed on several skutterudite-type compounds by using the extended Hückel method. Starting with the molecular orbital calculations on isolated P4 and As4 rings, the reason for the band dispersions of the skutterudites was found to be the interactions between the nonmetal atoms. Both the intermolecular and the intramolecular interactions between the phosphorus atoms are stronger than those between the arsenic atoms. Hence, the dispersion of the bands in CoP3 is larger than that in CoAs3. The COOP (crystal orbital overlap population) integrals of the intramolecular P-P bonds reveal the relation between the valence electron count and the observed bond lengths. The P-P bonds in the skutterudite-type compounds like TP3 (T = Co, Rh, Ir) become stronger by reduction as in NiP3 and weaker by oxidation as in RT4X12 (X = P, As, Sb; R = alkaline earth or rare earth metals) because the bands near the Fermi level are bonding. The electronic reason for the geometric distortion of the Ge2Y2 (Y = S, Se) units of mixed skutterudites TGe1.5Y1.5 is caused by an electron pair gap on germanium, which corresponds to low electron density perpendicular to the ring plane on the germanium atoms. Received: 6 October 1998 / Revised, accepted: 18 June 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号