The paper reviews the recent advances in studying grouper nutrition requirement for the development of cost-effective and environmentally friendly artificial diets. It consists of seven parts: protein and amino acid, lipid and essential fatty acid, carbohydrate, vitamin, mineral, alternative protein source, broodstock and larval nutrition. The review provides some basic information for further investigation of nutrient requirements of groupers. 相似文献
Mountains and plateaus in Southwest China contain many subalpine and alpine wetlands, with significant hydroecological functions. But ungauged or poorly gauged conditions limit the study and understanding of hydrological regimes of these wetland types. This study selects an ungauged subalpine wetland-Napahai in Northwest Yunnan, China-as a case for developing a practical approach to revealing its storage-area relationship of open water. A Trimble R8 GNSS (Global Navigation Satellites Systems) RTK (Real-time Kinematic system) and sonar fathometer were used to survey fine-resolution elevation data and generate a digital elevation model of the Napahai Wetland. Forty-four Landsat images from 1987 to 2011 were collected, and the Normalized Difference Water Index was used to classify open water features in the area. The area of open water in Napahai was calculated for each phase. With these data and a developed conceptual model, the storage of open water for each phase was estimated using ArcGIS tools. Both storage and area of open water showed significant intra-annual and inter-annual variations. In the rainy season, the monthly change of average storage of open water in Napahai showed about 1-2 months lag behind mean monthly rainfall. The storage-area relationship of open water was well fit by a power function equation (R 2 ≈0.91, n=44). This study indicates that if detailedelevations are available for similarly ungauged subalpine wetlands in Southwest China, researchers can use this practical approach to estimate multi- temporal areas and storages and reveal the storage-area relationship of open water in the wetlands. The study provided valuable information of this case wetland for optimizing its hydro-ecological managements and a new method to wetland researchers and managers for the hydrological study of similarly ungauged wetland complex. 相似文献
Satellite records show that the extent and thickness of sea ice in the Arctic Ocean have significantly decreased since the early 1970s. The prediction of sea ice is highly important, but accurate simulation of sea ice variations remains highly challenging. For improving model performance, sensitivity experiments were conducted using the coupled ocean and sea ice model (NEMO-LIM), and the simulation results were compared against satellite observations. Moreover, the contribution ratios of dynamic and thermodynamic processes to sea ice variations were analyzed. The results show that the performance of the model in reconstructing the spatial distribution of Arctic sea ice is highly sensitive to ice strength decay constant (Crhg). By reducing the Crhg constant, the sea ice compressive strength increases, leading to improved simulated sea ice states. The contribution of thermodynamic processes to sea ice melting was reduced due to less deformation and fracture of sea ice with increased compressive strength. Meanwhile, dynamic processes constrained more sea ice to the central Arctic Ocean and contributed to the increases in ice concentration, reducing the simulation bias in the central Arctic Ocean in summer. The root mean square error (RMSE) between modeled and the CryoSat-2/SMOS satellite observed ice thickness was reduced in the compressive strength-enhanced model solution. The ice thickness, especially of multiyear thick ice, was also reduced and matched with the satellite observation better in the freezing season. These provide an essential foundation on exploring the response of the marine ecosystem and biogeochemical cycling to sea ice changes.