首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   9篇
测绘学   3篇
大气科学   11篇
地球物理   29篇
地质学   34篇
海洋学   13篇
天文学   30篇
自然地理   11篇
  2024年   3篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   8篇
  2017年   2篇
  2016年   7篇
  2015年   8篇
  2014年   3篇
  2013年   10篇
  2012年   4篇
  2011年   6篇
  2010年   5篇
  2009年   11篇
  2008年   4篇
  2007年   8篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   6篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1994年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有131条查询结果,搜索用时 593 毫秒
31.
32.
ABSTRACT

The AHI-FSA (Advanced Himawari Imager - Fire Surveillance Algorithm) is a recently developed algorithm designed to support wildfire surveillance and mapping using the geostationary Himawari-8 satellite. At present, the AHI-FSA algorithm has only been tested on a number of case study fires in Western Australia. Initial results demonstrate potential as a wildfire surveillance algorithm providing high frequency (every 10 minutes), multi-resolution fire-line detections. This paper intercompares AHI-FSA across the Northern Territory of Australia (1.4 million km2) over a ten-day period with the well-established fire products from LEO (Low Earth Orbiting) satellites: MODIS (Moderate Resolution Imaging Spectroradiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite). This paper also discusses the difficulties and solutions when comparing high temporal frequency fire products with existing low temporal resolution LEO satellite products. The results indicate that the multi-resolution approach developed for AHI-FSA is successful in mapping fire activity at 500?m. When compared to the MODIS, daily AHI-FSA omission error was only 7%. High temporal frequency data also results in AHI-FSA observing fires, at times, three hours before the MODIS overpass with much-enhanced detail on fire movement.  相似文献   
33.
Rare earth element and yttrium (REE+Y) concentrations were determined in 49 Late Devonian reefal carbonates from the Lennard Shelf, Canning Basin, Western Australia. Shale-normalized (SN) REE+Y patterns of the Late Devonian samples display features consistent with the geochemistry of well-oxygenated, shallow seawater. A variety of different ancient limestone components, including microbialites, some skeletal carbonates (stromatoporoids), and cements, record seawater-like REE+Y signatures. Contamination associated with phosphate, Fe-oxides and shale was tested quantitatively, and can be discounted as the source of the REE+Y patterns. Co-occurring carbonate components that presumably precipitated from the same seawater have different relative REE concentrations, but consistent REE+Y patterns. Clean Devonian early marine cements (n = 3) display REE+Y signatures most like that of modern open ocean seawater and the highest Y/Ho ratios (e.g., 59) and greatest light REE (LREE) depletion (average NdSN/YbSN = 0.413, SD = 0.076). However, synsedimentary cements have the lowest REE concentrations (e.g., 405 ppb). Non-contaminated Devonian microbialite samples containing a mixture of the calcimicrobe Renalcis and micritic thrombolite aggregates in early marine cement (n = 11) have the highest relative REE concentrations of tested carbonates (average total REE = 11.3 ppm). Stromatoporoid skeletons, unlike modern corals, algae and molluscs, also contain well-developed, seawater-like REE patterns. Samples from an estuarine fringing reef have very different REE+Y patterns with LREE enrichment (NdSN/YbSN > 1), possibly reflecting inclusion of estuarine colloidal material that contained preferentially scavenged LREE from a nearby riverine input source. Hence, Devonian limestones provide a proxy for marine REE geochemistry and allow the differentiation of co-occurring water masses on the ancient Lennard Shelf. Although appropriate partition coefficients for quantification of Devonian seawater REE concentrations from out data are unknown, hypothetical Devonian Canning Basin seawater REE patterns were obtained with coefficients derived from modern natural proxies and experimental values. Resulting Devonian seawater patterns are slightly enriched in LREE compared to most modern seawaters and suggest higher overall REE concentrations, but are very similar to seawaters from regions with high terrigenous inputs. Our results suggest that most limestones should record important aspects of the REE geochemistry of the waters in which they precipitated, provided they are relatively free of terrigenous contamination and major diagenetic alteration from fluids with high, non-seawater-like REE contents. Hence, we expect that many other ancient limestones will serve as seawater REE proxies, and thereby provide information on paleoceanography, paleogeography and geochemical evolution of the oceans.  相似文献   
34.
Calculation of lava effusion rates from Landsat TM data   总被引:1,自引:0,他引:1  
 We present a thermal model to calculate the total thermal flux for lava flowing in tubes, on the surface, or under shallow water. Once defined, we use the total thermal flux to estimate effusion rates for active flows at Kilauea, Hawaii, on two dates. Input parameters were derived from Landsat Thematic Mapper (TM), field and laboratory measurements. Using these parameters we obtain effusion rates of 1.76±0.57 and 0.78±0.27 m3 s–1 on 23 July and 11 October 1991, respectively. These rates are corroborated by field measurements of 1.36±0.14 and 0.89±0.09 m3 s–1 for the same dates (Kauahikaua et al. 1996). Using weather satellite (AVHRR) data of lower spatial resolution, we obtain similar effusion rates for an additional 26 dates between the two TM-derived measurements. We assume that, although total effusion rates at the source declined over the period, the shut down of the ocean entry meant that effusion rates for the surface flows alone remained stable. Such synergetic use of remotely sensed data provides measurements that can (a) contribute to monitoring flow-field evolution, and (b) provide reliable numerical data for input into rheological and thermal models. We look forward to being able to produce estimates for effusion rates using data from high-spatial-resolution sensors in the earth observing system (EOS) era, such as Landsat 7, the hyperspectral imager, the advanced spaceborne thermal emission spectrometer, and the advanced land imager. Received: 25 July 1997 / Accepted: 26 February 1998  相似文献   
35.
A Landsat Thematic Mapper (TM) image acquired on 23 July 1991 recorded widespread activity associated with the Episode 48 of the Pu'u 'O'o-Kupaianaha eruption of Kilauea Volcano, Hawaii. The scene contains a very large number (>3500) of thermally elevated near infrared (0.8–2.35 m) pixels (each 900 m2), which enable the spatial distribution of volcanic activity to be identified. This activity includes a lava lake within Pu'u 'O'o cone, an active lava tube system (7.9 km in length) with skylights between the Kupaianaha lava shield and several ocean entry points, and extensive active surface flows (total area of 1.3 km2) within a much larger area of cooling flows (total16 km2). The production of an average flux density map from the TM data of the flow field, wherein the average flux density is defined in units of Wm-2, allows for the chronology of emplacement of active and cooling flows to be determined. The flux density map reveals that there were at least three breakouts (>5000 Wm-2) feeding active flows, but on the day that the data were collected the TM recorded a waning phase of surface activity in this area, based on the relatively large amount of intermediate power-emitting (cooling) flows compared to high power-emitting (active) flows. The production of a comparable flux density map for future eruptions would aid in the assessment of volcanic hazards if the data were available in near-real time.  相似文献   
36.
Soil‐mantled pole‐facing hillslopes on Earth tend to be steeper, wetter, and have more vegetation cover compared with adjacent equator‐facing hillslopes. These and other slope aspect controls are often the consequence of feedbacks among hydrologic, ecologic, pedogenic, and geomorphic processes triggered by spatial variations in mean annual insolation. In this paper we review the state of knowledge on slope aspect controls of Critical Zone (CZ) processes using the latitudinal and elevational dependence of topographic asymmetry as a motivating observation. At relatively low latitudes and elevations, pole‐facing hillslopes tend to be steeper. At higher latitudes and elevations this pattern reverses. We reproduce this pattern using an empirical model based on parsimonious functions of latitude, an aridity index, mean‐annual temperature, and slope gradient. Using this empirical model and the literature as guides, we present a conceptual model for the slope‐aspect‐driven CZ feedbacks that generate asymmetry in water‐limited and temperature‐limited end‐member cases. In this conceptual model the dominant factor driving slope aspect differences at relatively low latitudes and elevations is the difference in mean‐annual soil moisture. The dominant factor at higher latitudes and elevations is temperature limitation on vegetation growth. In water‐limited cases, we propose that higher mean‐annual soil moisture on pole‐facing hillslopes drives higher soil production rates, higher water storage potential, more vegetation cover, faster dust deposition, and lower erosional efficiency in a positive feedback. At higher latitudes and elevations, pole‐facing hillslopes tend to have less vegetation cover, greater erosional efficiency, and gentler slopes, thus reversing the pattern of asymmetry found at lower latitudes and elevations. Our conceptual model emphasizes the linkages among short‐ and long‐timescale processes and across CZ sub‐disciplines; it also points to opportunities to further understand how CZ processes interact. We also demonstrate the importance of paleoclimatic conditions and non‐climatic factors in influencing slope aspect variations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
37.
Soils in post‐wildfire environments are often characterized by a low infiltration capacity with a high degree of spatial heterogeneity relative to unburned areas. Debris flows are frequently initiated by run‐off in recently burned steeplands, making it critical to develop and test methods for incorporating spatial variability in infiltration capacity into hydrologic models. We use Monte Carlo simulations of run‐off generation over a soil with a spatially heterogenous saturated hydraulic conductivity (Ks) to derive an expression for an aerially averaged saturated hydraulic conductivity ( ) that depends on the rainfall rate, the statistical properties of Ks, and the spatial correlation length scale associated with Ks. The proposed method for determining is tested by simulating run‐off on synthetic topography over a wide range of spatial scales. Results provide a simplified expression for an effective saturated hydraulic conductivity that can be used to relate a distribution of small‐scale Ks measurements to infiltration and run‐off generation over larger spatial scales. Finally, we use a hydrologic model based on to simulate run‐off and debris flow initiation at a recently burned catchment in the Santa Ana Mountains, CA, USA, and compare results to those obtained using an infiltration model based on the Soil Conservation Service Curve Number.  相似文献   
38.
The long awaited event of the detection of a gravitational wave from a binary neutron star merger and its electromagnetic counterparts marked the beginning of a new era in observational astrophysics. The brand-new field of gravitational wave astronomy combined with multi-messenger observations will uncover violent, highly energetic astrophysical events that could not be explored before by humankind. This article focuses on the presumable appearance of a hadron–quark phase transition and the formation of regions of deconfined quark matter in the interior of a neutron star merger product. The evolution of density and temperature profiles inside the inner region of the produced hypermassive/supramassive neutron star advises an incorporation of a hadron–quark phase transition in the equation of state of neutron star matter. The highly densed and hot neutron star matter of the remnant populate regions in the QCD phase diagram where a non neglectable amount of deconfined quark matter is expected to be present. If a strong hadron–quark phase transition would happen during the post-merger phase, it will be imprinted in the spectral properties of the emitted gravitational wave signal and might give an additional contribution to the dynamically emitted outflow of mass.  相似文献   
39.
As network performance has outpaced computational power and storage capacity, a new paradigm has evolved to enable the sharing of geographically distributed resources. This paradigm is known as Grid computing and aims to offer access to distributed resource irrespective of their physical location. Many national, European and international projects have been launched during the last years trying to explore the Grid and to change the way we are doing our everyday work. In Ireland, we have started the CosmoGrid project that is a collaborative project aimed to provide high performance super-computing environments. This will help to address complex problems such as magnetohydrodynamic outflows and jets in order to model and numerically simulate them. Indeed, the numerical modeling of plasma jets requires massive computations, due to the wide range of spatial-temporal scales involved. We present here the first jet simulations and their corresponding models that could help to understand results from laboratory experiments.  相似文献   
40.
Studies of glacier hydrology rely increasingly on measurements made in boreholes as a basis for reconstructing the character and behaviour of subglacial drainage systems. In temperate glaciers, in which boreholes remain open to the atmosphere following drilling, the interpretation of such data may be complicated by supraglacial or englacial water flows to and from boreholes. We report on a suite of techniques used to identify borehole water sources and to reconstruct patterns of water circulation within boreholes at Haut Glacier d'Arolla, Switzerland. Results are used to define a number of borehole ‘drainage’ types. Examples of each drainage type are presented, along with the manner in which they influence interpretations of borehole water‐levels, borehole water‐quality data, and borehole dye traces. The analysis indicates that a full understanding of possible borehole drainage modes is required for the correct interpretation of many borehole observations, and that those observations provide an accurate indication of subglacial conditions only under relatively restricted circumstances. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号