全文获取类型
收费全文 | 465篇 |
免费 | 13篇 |
国内免费 | 9篇 |
专业分类
测绘学 | 15篇 |
大气科学 | 33篇 |
地球物理 | 92篇 |
地质学 | 226篇 |
海洋学 | 49篇 |
天文学 | 39篇 |
自然地理 | 33篇 |
出版年
2023年 | 3篇 |
2022年 | 5篇 |
2021年 | 4篇 |
2020年 | 5篇 |
2019年 | 6篇 |
2018年 | 8篇 |
2016年 | 21篇 |
2015年 | 12篇 |
2014年 | 25篇 |
2013年 | 27篇 |
2012年 | 27篇 |
2011年 | 17篇 |
2010年 | 22篇 |
2009年 | 15篇 |
2008年 | 16篇 |
2007年 | 8篇 |
2006年 | 19篇 |
2005年 | 19篇 |
2004年 | 9篇 |
2003年 | 15篇 |
2002年 | 9篇 |
2001年 | 15篇 |
2000年 | 9篇 |
1999年 | 6篇 |
1998年 | 8篇 |
1997年 | 4篇 |
1995年 | 4篇 |
1993年 | 3篇 |
1992年 | 8篇 |
1991年 | 7篇 |
1990年 | 7篇 |
1988年 | 3篇 |
1987年 | 6篇 |
1986年 | 4篇 |
1985年 | 9篇 |
1984年 | 6篇 |
1983年 | 6篇 |
1982年 | 8篇 |
1981年 | 5篇 |
1980年 | 5篇 |
1979年 | 7篇 |
1978年 | 9篇 |
1977年 | 4篇 |
1976年 | 4篇 |
1975年 | 6篇 |
1974年 | 3篇 |
1973年 | 10篇 |
1972年 | 5篇 |
1971年 | 4篇 |
1955年 | 2篇 |
排序方式: 共有487条查询结果,搜索用时 12 毫秒
101.
102.
Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus 总被引:5,自引:0,他引:5
Plates are an integral part of the convection system in the fluid mantle, but plate boundaries are the product of brittle faulting and plate motions are strongly influenced by the existence of such faults. The conditions for plate tectonics are studied by considering brittle behaviour, using Byerlee's law to limit the maximum stress in the lithosphere, in a mantle convection model with temperature-dependent viscosity.
When the yield stress is high, convection is confined below a thick, stagnant lithosphere. At low yield stress, brittle deformation mobilizes the lithosphere which becomes a part of the overall circulation; surface deformation occurs in localized regions close to upwellings and downwellings in the system. At intermediate levels of the yield stress, there is a cycling between these two states: thick lithosphere episodically mobilizes and collapses into the interior before reforming.
The mobile-lid regime resembles convection of a fluid with temperature-dependent viscosity and the boundary-layer scalings are found to be analogous. This regime has a well defined Nusselt number–Rayleigh number relationship which is in good agreement with scaling theory. The surface velocity is nearly independent of the yield stress, indicating that the 'plate' motion is resisted by viscous stresses in the mantle.
Analysis suggests that mobilization of the Earth's lithosphere can occur if the friction coefficient in the lithosphere is less than 0.03–0.13—lower than laboratory values but consistent with seismic field studies. On Venus, the friction coefficient may be high as a result of the dry conditions, and brittle mobilization of the lithosphere would then be episodic and catastrophic. 相似文献
When the yield stress is high, convection is confined below a thick, stagnant lithosphere. At low yield stress, brittle deformation mobilizes the lithosphere which becomes a part of the overall circulation; surface deformation occurs in localized regions close to upwellings and downwellings in the system. At intermediate levels of the yield stress, there is a cycling between these two states: thick lithosphere episodically mobilizes and collapses into the interior before reforming.
The mobile-lid regime resembles convection of a fluid with temperature-dependent viscosity and the boundary-layer scalings are found to be analogous. This regime has a well defined Nusselt number–Rayleigh number relationship which is in good agreement with scaling theory. The surface velocity is nearly independent of the yield stress, indicating that the 'plate' motion is resisted by viscous stresses in the mantle.
Analysis suggests that mobilization of the Earth's lithosphere can occur if the friction coefficient in the lithosphere is less than 0.03–0.13—lower than laboratory values but consistent with seismic field studies. On Venus, the friction coefficient may be high as a result of the dry conditions, and brittle mobilization of the lithosphere would then be episodic and catastrophic. 相似文献
103.
In situ Mixing of Organic Matter Decreases Hydraulic Conductivity of Denitrification Walls in Sand Aquifers 总被引:2,自引:0,他引:2
Gregory F. Barkle Louis A. Schipper Craig P. Burgess Brett D.M. Painter 《Ground Water Monitoring & Remediation》2008,28(1):57-64
In a previous study, a denitrification wall was constructed in a sand aquifer using sawdust as the carbon substrate. Ground water bypassed around this sawdust wall due to reduced hydraulic conductivity. We investigated potential reasons for this by testing two new walls and conducting laboratory studies. The first wall was constructed by mixing aquifer material in situ without substrate addition to investigate the effects of the construction technique (mixed wall). A second, biochip wall, was constructed using coarse wood chips to determine the effect of size of the particles in the amendment on hydraulic conductivity. The aquifer hydraulic conductivity was 35.4 m/d, while in the mixed wall it was 2.8 m/d and in the biochip wall 3.4 m/d. This indicated that the mixing of the aquifer sands below the water table allowed the particles to re-sort themselves into a matrix with a significantly lower hydraulic conductivity than the process that originally formed the aquifer. The addition of a coarser substrate in the biochip wall significantly increased total porosity and decreased bulk density, but hydraulic conductivity remained low compared to the aquifer. Laboratory cores of aquifer sand mixed under dry and wet conditions mimicked the reduction in hydraulic conductivity observed in the field within the mixed wall. The addition of sawdust to the laboratory cores resulted in a significantly higher hydraulic conductivity when mixed dry compared to cores mixed wet. This reduction in the hydraulic conductivity of the sand/sawdust cores mixed under saturated conditions repeated what occurred in the field in the original sawdust wall. This indicated that laboratory investigations can be a useful tool to highlight potential reductions in field hydraulic conductivities that may occur when differing materials are mixed under field conditions. 相似文献
104.
105.
Abstract The improvement of sensors such as various high‐resolution seismic and navigational systems and side‐scan sonar, of offshore shallow‐water drilling techniques, and of laboratory analyses has allowed the marine geologist to make more accurate identifications and maps of the distribution of numerous types of marine sediment instabilities, as well as to determine the mechanisms responsible for their occurrence. A large number of data on the continental shelf and upper continental slope off the modern delta of the Mississippi river have been compiled; these data will be used to document the major types of slope instabilities. The continental shelf and slope off the modern Mississippi river delta display various types of sediment instability. High rates of sedimentation (up to 80 m per century), weak, high‐water‐content clays, and differential weighting of clay sediments characterize this region. The major types of sediment instabilities that have been documented include (a) Peripheral slumping, with dimensions of slumps ranging from 200 to 1000 m; slumping often occurring in multiple stairstep arrangement; and downslope movement as high as 700 m per year. (b) Shallow diapiric intrusions, ranging in size from a few hundred meters to 2 km in diameter; vertical displacement ranging from 200 to 500 m; rate of sediment movement several meters per year; and intrusions caused by differential sediment loading, (c) Radial graben (tensional faulting), with widths from 50 to 500 m and lengths of several kilometers; both vertical and downslope lateral movements occurring; and downslope movements of surface material as much as 5 m per year common. (d) Circular collapse depressions, with diameters of depressions ranging from 50 to 500 m; topography of depression interiors, hummocky; and depressions possibly caused by dewatering or degassing of sediments under the influence of cyclic wave loading. (e) Surface mudflows, thick (often more than 35 m) masses of surface sediment flowage; often bounded by abrupt seaward slope; mudflows often extending laterally for distances in excess of 100 km; movement sporadic and lobate and rates of movement as much as several hundred meters per year; often being associated with extremely hummocky topography and mud volcanoes; and with extrusion of sediments the possible mechanism. (f) Shelf‐edge arcuate slumps, with large arcuate slumps displacing several hundred meters of sediment; slippage planes are commonly concave. Finally, (g) Various deep‐seated faults, with faults extending from deep horizons up to modern sediment surface; commonly being associated with abrupt scarps on the seafloor; numerous contemporaneous faults; and local slumping associated with fault scarps. 相似文献
106.
Louis R. Bernier 《Environmental Geology》2005,47(5):670-684
The efficiency of serpentinite as an alternative alkalinity generating material for the passive treatment of acid mine drainage (AMD) was assessed in the laboratory. Three series of batch experiments were designed for the passive treatment of a low pH (1.6) AMD synthetic solution containing 2,500 ppm Fe2+, 6,600 ppm SO42–, 10.5 ppm Al, 15 ppm Ni, and traces of Cr, Mn and Cu. The influencing factors studied were: the effect of water/rock ratio, residence time, type of the alkalinity generating material (dolomite, magnesite, marble, serpentinite), and nature of the system (open vs. closed cells). The variations in solution chemistry observed in the open cells indicate that a lower water/rock ratio (0.33 ml/g) was the most efficient for metals removal. The optimal residence time in open cells was 24 h to reach the higher pH values. In the closed cells laboratory setup, synthetic AMD was placed in contact with the various alkaline materials for three different contact times (24, 48, 72 h). The optimal pH was reached after 48 h and did not change appreciably for longer contact time, and the best results for metal removals were obtained with marble and serpentinite. Single treatment efficiency was compared with a successive treatment approach. The most promising results were obtained with a five step treatment: (1) pre-treatment in a closed cell using serpentinite, (2) aeration and settling, (3) treatment in an open cell using marble, (4) final aeration and settling, and (5) filtration with a coarse silica sand. With this configuration, the final pH was 6.5 and pronounced metals depletion was achieved (100% for Al, 99.95% for Fe, 85.7% for Ni). 相似文献
107.
Results of the analyses of twenty-three samples from the Middle Miocene to Lower Pliocene strata from DSDP Site 467, offshore California, are presented. The analyses were performed with the aim of determining the origin of the organic matter, the stratigraphic section's hydrocarbon generation potential and extent of organic diagenesis. Organic carbon contents are an order of magnitude greater than those typically found in deep sea sediments, suggesting an anoxic depositional environment and elevated levels of primary productivity. Hydrocarbon generation potentials are above average for most samples. The results of elemental analyses indicate that the kerogens are primarily composed of type II organic matter and are thermally immature. Analysis of the bitumen fractions confirms that the samples are immature. In cores from 541 to 614 meters, the gas chromatograms of the C15+ non-aromatic hydrocarbon fractions are dominated by a single peak which was identified as 17α(H), 18α(H), 21β(H)-28, 30-bisnorhopane. This interval is the same area in which the highest degrees of anoxia are observed as reflected by the lowest pristane/phytane ratios. This correlation may have some implications with regard to the origin of the bisnorhopane and its possible use as an indicator of anoxic depositional conditions within thermally immature sediments. 相似文献
108.
109.
André Girard Jean Besson Renée Giraudet Louis Gramont 《Pure and Applied Geophysics》1978,117(3):381-394
Summary Spectrometric experiments performed, in November 1976, within the framework of the Latitude Survey Mission on board the NASA Convair 990 from Ames Research Center are briefly deseribed. The results presented concern odd nitrogen molecules, HCl and water vapor. In terms of vertical column density, HNO3 is predominant over NO+NO2 at all latitudes higher than 40 degrees. A seasonal variation of NO2 abundance is observed, with larger values in the summer hemisphere at high latitude. The mean zenith column density of HCl above 11 km is 1.5×1015 mol.cm–2, with no evidence for any seasonal or climatic variation. Local number densities as high as 1.4×1010 mol.cm–3 for HNO3 and 5.4×1014 mol.cm–3 for water vapor have been measured during the same flight near 11 km. 相似文献
110.
Mihai Tarapoanca Paul Andriessen Karine Broto Louis Chérel Nadine Ellouz-Zimmermann Jean-Luc Faure Anne Jardin Charles Naville François Roure 《Arabian Journal of Geosciences》2010,3(4):395-411
This paper aims to simulate the kinematic evolution of a regional transect crossing the Northern Emirates in the northernmost part of the Semail Ophiolite and the Dibba zone, just south of the Musandam Platform exposures. The studied section comprises, from top to bottom and from inner to outer zones, (1) the erosional remnants of the Semail Ophiolite, mainly made up of serpentinized ultramafics in the west and gabbros in the east, (2) high-grade metamorphic rocks which are currently exposed in the core of a nappe anticline near Masafi, (3) far-travelled Hawasina basinal units and Sumeini paleo-slope units of the Dibba Zone, (4) parautochthonous platform carbonates, which are currently well exposed in the Musandam area, and (5) a flexural basin filled with uppermost Cretaceous to Neogene sediments. Two main compressional episodes are generally identified, resulting first in the obduction of the Semail Ophiolite and then in the stacking of underlying platform carbonate units of the former Arabian passive margin, thus accounting for the present architecture of this transect: (1) first, deformation at the plate boundary initiated in the Late Cretaceous, resulting in the obduction of the Semail Ophiolite and the progressive accretion of the Hawasina and Sumeini tectonic wedge on top of the Arabian foreland, leading to a progressive bending of its lithosphere and development of a wide flexural basin; (2) compression resumed during the Neogene, leading to the tectonic stacking of the parautochthonous platform duplexes of Musandam and Margham trends, the development of out-of-sequence thrusts and triangle zones, refolding of the sole thrust of the former Late Cretaceous accretionary wedge and coeval normal (?) high-angle faulting along the contact between the Musandam and Dibba zones. However, seismic profiles and paleo-thermometers also help in identifying another erosional event at the boundary between the Paleogene Pabdeh and the Neogene Fars series. Evidenced by the local erosional truncation of the Pabdeh series in the vicinity of the frontal triangle zone (i.e. the inner part of the former Late Cretaceous foredeep), this Paleogene uplift/unroofing episode is tentatively interpreted here as an evidence for a continuum of compressional deformation lasting from the Late Cretaceous to the Middle Miocene although one may alternatively speculate that it was related to the detachment of the subducted slab. Although carbonate facies are usually not suitable for apatite fission track (AFT) studies, we were able to extract detrital apatites from quartz-bearing Triassic dolomites in the Musandam area. However, the yield and the quality were both poor and too few fission track lengths could be measured, making it difficult to interpret the meaning of the FT ages. The FT dates obtained in this study are therefore compared with those existing in the literature. Fortunately enough, for each sample, at least ten apatite crystals could be used for fission track dating, except for site 6 with only five datable apatite grains. The obtained apatite fission track dates between 28 and 13 Ma, much younger than the Triassic age of the series, are taken to represent reset fission track ages, implying erosion of an up-to-3-km-thick pile of Jurassic–Cretaceous carbonates and Hawasina allochthon during the Neogene. Apatite fission track dates from the ~95 M-old plagiogranites of the Semail complex (Searle and Cox, Geol Mag 139(3):241–255, 2002) obtained in this study and compared with those recently published provide evidences for more than one cooling event. An early unroofing of the ophiolite during the Late Cretaceous is revealed in fission track dates of 72–76 Ma at the top of the ophiolite in the east, which are coeval and also consistent with the occurrence of paleo-soils, rudists and paleo-reefs on top of serpentinized ultramafics in the west. High-pressure rocks at As Sifah in the southeast near Muscat revealed apatite fission track data ranging from ~46 to 63 Ma (Gray et al. 2006). The leucocratic part of the ophiolite (sample UAE 180) yielded comparable young apatite (40.6?±?3.9 Ma) and zircon (46.6?±?4.3 Ma) FT dates. A Cenozoic (~20–21 Ma) exhumation has been determined for the Bani Hamid metamorphic sole in northern Oman, applying low temperature geochronology and combining apatite FT and apatite (U–Th)/He analyses (Gray et al. 2006). In this study, young apatite fission track dates of 20 Ma have also been found but at the base of the ophiolite near Masafi, in the core of the nappe anticline, thus indicating a Neogene age for the refolding of the allochthon and stacking of underlying parautochthonous platform carbonate units. During the subsequent 2D forward Thrustpack kinematic modelling of the regional transect, these AFT data-set has been used, together with available subsurface information, to reconstruct the past architecture of the structural sections through time, accounting for incremental deformation along the various decollement levels, synorogenic sedimentation and erosion, as well as for successive bending and unbending episodes of the Arabian lithosphere. 相似文献